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Protein-specific localization of a rhodamine-based
calcium-sensor in living cells†
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A small synthetic calcium sensor that can be site-specifically

coupled to proteins in living cells by utilizing the bio-orthogonal

HaloTag labeling strategy is presented. We synthesized an iodo-

derivatized BAPTA chelator with a tetramethyl rhodamine fluoro-

phore that allows further modification by Sonogashira cross-coup-

ling. The presented calcium sensitive dye shows a 200-fold

increase in fluorescence upon calcium binding. The derivatization

with an aliphatic linker bearing a terminal haloalkane-function by

Sonogashira cross-coupling allows the localization of the calcium

sensor to Halo fusion proteins which we successfully demonstrate

in in vitro and in vivo experiments. The herein reported highly sen-

sitive tetramethyl rhodamine based calcium indicator, which can

be selectively localized to proteins, is a powerful tool to determine

changes in calcium levels inside living cells with spatiotemporal

resolution.

Introduction

Calcium plays a key role as second messenger in living cells
and both the spatial and temporal changes of its endogenous
concentration [Ca2+]i have a significant effect on signaling
transduction in excitable and non-excitable cells.1 Different
approaches to measure calcium fluctuations in live cell experi-
ments have been developed: the genetically encoded calcium
indicators (GECIs)2 utilize calcium sensitive fluorescent pro-
teins or fusion proteins with the so-called “cameleons”3 and
“camgaroos”4 as well known examples. GECIs have the advan-
tage that they can be genetically targeted to any protein of

interest (POI), but they lack fast response to quick changes of
[Ca2+]i in living cells.5 Alternatively, small synthetic calcium
indicators6 as Indo-1/Fura 1–3,7 Rhod-1 + 2/Fluo1–38 and Fluo-
49 have been developed for calcium imaging in live cells and
organisms with the advantage of being much smaller in size
compared to fluorescent proteins and therefore less disruptive.
Furthermore they can be chemically modified to adapt both
the chemical and physical properties to the experimental
needs. Over the last decades, numerous small synthetic
calcium sensors have been developed and used for calcium
measurements in living systems.10 However, their application
is limited to the measurements of [Ca2+]i in the cytosolic
environment as they lack the ability to be specifically localized
within the cells. Recently, protein labeling strategies for site-
specific localization of small synthetic calcium sensors to a
POI utilizing the FlAsH-5 and SNAP-tag protein11 labeling strat-
egy have been reported. Whereas the calcium sensor for
FlAsH-tag applications is based on fluorescein combined with
the calcium binding APTRA (2-aminophenol-N,N,O-tri-acetat)12

motive, the SNAP-tag based approach utilizes a BODIPY (boron
dipyrromethene)13 conjugated to the well-known BAPTA
(1,2 bis-(ortho-aminophenoxy)ethane-N,N,N′,N′-tetra-acetate)14

calcium-ion chelator. The fluorophores used in these studies
need to be excited in the blue range of the spectrum, whereas
calcium indicators for protein localization, which can be
excited at longer wavelengths, have not been reported yet. Here
we introduce a new sensitive synthetic calcium indicator based
on the fluorophore rhodamine that can be specifically loca-
lized to a POI in living cells utilizing the Halo-tag protein label-
ing strategy (Fig. 1).15 The new calcium sensor shows a >200-
fold increase in fluorescence upon calcium binding and can
be excited in the green spectrum (Exmax = 552 nm; Emmax =
580 nm). In a first proof of principle, we demonstrate the
specific localization of the calcium sensitive fluorophore to a
POI by labeling of a purified Halo fusion protein. For live cell
application of the presented strategy, we performed specific
labeling of nucleus localized Halo tagged histone protein
(H2B) with the calcium sensor. We show that the H2B loca-
lized calcium sensor can be used to monitor nuclear calcium
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changes in living cells. The herein presented localizable rhoda-
mine derived calcium indicator can be used to measure rapid
spatiotemporal changes of [Ca2+]i in living cells.

Results and discussion

The considerations for the development of the calcium sensor
were based on the high photostability and brightness of the
fluorophore tetramethyl rhodamine (TAMRA) in aqueous
systems16 and the high selectivity of the BAPTA chelator in the
presence of magnesium ions.14 The commercially available
Rhod-2 calcium indicator8 which is based on these both
chemical components has a Kd-value in the nanomolar range
and became a standard tool for calcium measurements in
living cells.8,17 However, the mitochondrial localization18 of
rhodamine derivatives limits its application. Therefore we
sought to develop a calcium indicator with the advantageous
photophysical properties of a rhodamine, the excellent
calcium selectivity and sensitivity of BAPTA and an additional
functionality for further chemical modification. The additional
functionality will then be used to attach a haloalkane which
serves as a substrate for the HaloTag and enables the covalent
attachment to Halo fusion proteins. The highly selective
protein localization will then suppress the unwanted mito-
chondrial localization of the rhodamines. For this reason, we
first synthesized a BAPTA core with an iodine modification
that allows the selective functionalization by Sonogashira
cross-coupling in a final step. Scheme 1 outlines the synthesis

Fig. 1 (A) Measurement of spatiotemporal changes of calcium levels
(e.g. in the nucleus) using the RhoCa-Halo probe. Halo-H2B fusion
protein, transiently expressed in cells can be specifically labeled with the
calcium sensitive probe RhoCa-Halo. ATP stimulated influx of free
calcium ions into the cytosol can be visualized by a significant fluor-
escence increase of the localized probe. (B) Structure of the rhodamine
based RhoCa-Halo. The calcium sensor was derivatized at the calcium
sensitive BAPTA-site by Sonogashira cross-coupling to introduce a
haloalkane function for site-specific labeling by utilizing the HaloTag-
strategy.

Scheme 1 Synthesis of RhoCa-I and RhoCa-I AM. Reaction conditions: (a) K2CO3, 1,2-dibromoethane, MeCN, reflux; 85%; (b) 5-iodo-2-nitro-
phenol, K2CO3, DMF, 45 °C; (c) 1, DMF, 130 °C o/n, 84%; (d) Sn/HCl, reflux, quant.; (e) methyl bromoacetate, NaI, proton sponge, MeCN, reflux, 28%;
(f ) DMF, POCl3, pyridine, 80 °C; (g) H2O, 0 °C, 27%; (h) 3-(dimethylamino)-phenol, propionic acid, 110 °C; (i) p-chloranil, DCM/MeOH, rt, 14%; ( j)
DCM/MeOH, 1 M NaOH, rt, 67%; (k) bromomethyl acetate, (iPr)2NEt, DCM, rt, 13%.
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of RhoCa-I, the iodine modified BAPTA calcium chelator
coupled to rhodamine. First ortho-nitrophenol was alkylated
with 1,2-dibromoethane under basic conditions to yield 1.
Further alkylation with 5-iodo-2-nitrophenol and reduction of
the nitro functions resulted in the diamine 3. Alkylation with
methyl bromoacetate followed by Vilsmeier–Haack formylation
yielded 5 which was then converted to the BAPTA rhodamine 6
by treatment of 5 with 3-(dimethylamino)-phenol under acetic
conditions and subsequent oxidation.19 Finally, the methyl
esters of 6 were saponified to obtain the calcium sensitive
RhoCa-I. To render the newly synthesized calcium indicator
cell permeable for its application in living cells, 6 was
converted to the respective acetoxymethyl ester (AM-ester)
RhoCa-I AM.

Calcium titration (in an EGTA-buffered solution with free
calcium concentrations ranging from 0 µM to 39 µM,
Fig. S1A,† λex = 552 nm) of RhoCa-I revealed a 215-fold fluo-
rescence enhancement upon calcium binding and a Kd-value
of 2.50 ± 0.17 µM (Fig. S1B†). The relative quantum yield20 was
determined to be 20.9 ± 0.6% at [Ca2+]free = 39 µM and 0.07 ±
0.01% at [Ca2+]free = 0 µM in reference to Rhodamine B.21 As
expected, the Kd-value of 2.5 µM is significantly higher than
the Kd-value of Rhod-2 (∼570 nM),10 which has a methyl group
in para-position to the alkyl amine groups. We assume that
that the higher Kd-value is due to the iodine substituent as
electron withdrawing groups are known to decrease the
calcium affinity of the BAPTA chelator.22

Next, we evaluated the calcium sensitivity of RhoCa-I in
living cells. Therefore, HeLa cells were incubated with the AM
ester of the photo-cleavable o-nitrophenyl EGTA (NP-EGTA23

AM) which has a high affinity for calcium ions (Kd = 80 nM).
One of the chelating moieties can be cleaved off by UV-light
radiation, thereby lowering the Ca2+ affinity by a factor of more
than 10 000. To release calcium ions from cellular internal
stores, the HeLa cells were stimulated with 100 µM ATP24 fol-
lowed by the incubation with 10 µM of the AM ester25 of
Rho-Ca-I (RhoCa-I AM). As presented in Fig. 2, the calcium
sensor shows a significant increase of fluorescence intensity
after calcium release from NP-EGTA after UV-radiation. As
mentioned before, rhodamine dyes tend to localize to mito-
chondria what we also observed for the calcium sensor RhoCa-I
(Fig. 2A). To overcome that limitation and to actively choose the
subcellular site for localization, we further synthesized the
calcium sensor with a haloalkane functionality for protein label-
ing utilizing the bioorthogonal HaloTag-strategy (RhoCa-Halo,
Scheme 2). First we derivatized 6 in a Sonogashira cross coup-
ling reaction with Boc-protected propargylamine. After de-
protection of the amine, the haloalkane functionality for
protein localization was introduced by peptide bond formation.
Finally, the methyl esters were converted to the free acids by
saponification to obtain RhoCa-Halo.

Next, we evaluated the suitability of the newly synthesized
RhoCa-Halo for protein labeling by an in vitro experiment.
RhoCa-Halo was incubated with different concentrations of a
purified HaloTag fused to green fluorescent protein
(GFP-Halo) and the covalent attachment of the probe to the

model protein GFP-Halo was visualized by SDS-PAGE. Fig. 3
shows both the in-gel fluorescence scan of the SDS-gel and the
Coomassie stain. From the fluorescence-scan it becomes clear,
that GFP-Halo gets efficiently labeled with RhoCa-Halo. BSA
served as negative control and did not show any labeling by
the calcium sensor. As expected, the positive control with a
non-calcium sensitive Halo-rhodamine, a commercially avail-
able substrate for the HaloTag (see ESI† for structure) resulted
in labeling of the Halo fusion protein. When fluorescence
emission was recorded at λem = 580 nm, we still detected fluo-
rescence from GFP. Therefore, we chose to measure the fluo-
rescence at λem = 670 nm, a range where GFP does not emit
fluorescence light when excited, to selectively record fluo-
rescence from RhoCa-Halo. Fig. 3 shows no fluorescence for

Fig. 2 (A) Live cell imaging of UV-mediated release of Ca2+, λex =
559 nm, detection at 572–672 nm. Upper panel: HeLa cells were incu-
bated with 10 µM NP-EGTA AM and endogenous release of calcium ions
from cellular stores was stimulated by ATP. After incubation with 10 µM
RhoCa-I AM (upper panel, left), NP-EGTA-chelated Ca2+ was liberated
by UV-radiation (405 nm) leading to a 2.5-fold increase of fluorescence
(upper panel, right). Lower panel: Cells were incubated with RhoCa-I AM
and the sensor shows clear sub-cellular localization (lower panel, left).
NP-EGTA AM was omitted in the experiment and no fluorescence
increase is monitored upon UV-radiation (lower panel, right). Scale bars
represent 10 µm. (B) Corresponding fluorescence intensity trace. UV-
mediated uncaging was conducted after 2 min with a short laser pulse.
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the sample containing only GFP-Halo (c (RhoCa-Halo = 0 µM)),
which shows that the detected fluorescence only accounts for
RhoCa-Halo. The detected fluorescence of the calcium sensor
is due to calcium traces in the SDS running buffer and the
increased calcium affinity at higher pH – values26 (pH = 8.8 in
the resolving gel).

To determine the spectral properties of the calcium sensor,
covalently attached to a protein, we incubated GFP-Halo with
5-fold excess of RhoCa-Halo for two hours and subsequently

removed the excess of RhoCa-Halo by spin-filtration. The
labeled protein was then used for titration with calcium to
determine the increase of fluorescence upon calcium binding.
An average fluorescence turn-on upon calcium binding of
76-fold with a quantum yield of 14.0 ± 1.6% at [Ca2+]free =
39 µM and 0.16 ± 0.01% at [Ca2+]free = 0 µM was determined
(Fig. S2A,† λex = 552 nm). In a separate experiment we deter-
mined a 240-fold fluorescence enhancement upon calcium
binding for the free RhoCa-Halo (not bound to the protein).
The observed lower fluorescence enhancement for the protein
bound sensor might be caused by interactions between the
calcium sensor and protein. As it is well known that the
environment of a fluorophore has strong impact on its photo-
physical properties. The Kd-value of the protein bound sensor
was found to be 1.51 ± 0.13 µM (Fig. S2B†) which makes it well
suitable for investigations of calcium oscillations ([Ca2+]i up to
1 µM)27 and calcium sparks ([Ca2+]i up to 10 µM) in biological
systems.28 After having established a method for the site
specific labeling of the model protein GFP-Halo with the
calcium-sensitive probe RhoCa-Halo, the newly developed
calcium sensor found application in live cell experiments.
Therefore, NIH/3T3 and HeLa cells were transiently transfected
with H2B-GFP and Halo-H2B and incubated with the accord-
ing AM-Ester (RhoCa-Halo AM). Epifluorescent microscopy
indicated successful labeling of the nucleus with the locali-
zable calcium sensor in both cell lines (Fig. 4).

Next, we investigated the behavior of the calcium sensor in
live cells after stimulation with ATP, inducing cytosolic influx
of calcium ions from endogenous stores. Therefore, HeLa cells
were transfected with Halo-H2B and incubated with

Scheme 2 Synthesis of RhoCa-Halo from 6 in a four-step procedure. Reaction conditions: (a) Pd(PPh3)4, NEt3, CuI, tert-butyl prop-2-yn-1-ylcarba-
mate, DMF, rt, 70%; (b) 4 M HCl/dioxane, rt, quant.; (c) HO2CCH2-[PEG-Halo], PyBOP, (iPr)2NEt, DMF, rt, quant.; (d) MeOH/DCM, 1 M NaOH, rt, 60%;
(e) bromomethyl acetate, (iPr)2NEt, DCM, rt, 35%.

Fig. 3 GFP-Halo (10 μM) was incubated with RhoCa-Halo (0, 10, 25
and 50 μM) and the successful labeling was verified by in-gel fluor-
escence (left). BSA (negative control) did not show any labeling when
incubated with the calcium indicator. The commercially available non-
calcium sensitive Halo-rhodamine (C) served as a positive control for
site-specific labeling of the Halo fusion protein. (Settings for in gel fluor-
escence scan: λex = 532 nm and λem = 670 nm.)
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RhoCa-Halo AM. Non-transfected cells were distinguished
from the transfected cells by confocal microscopy. Cytosolic
influx of free calcium ions was then stimulated with 100 µM
ATP and a noticeable increase of fluorescence was observed in
the nucleus of the transfected and labeled cells directly upon
addition of ATP (Fig. 5). The non-transfected cells did not
show any detectable increase of fluorescence in the nucleus.
This clearly demonstrated the potential of the fluorescent
sensor RhoCa-Halo as a localizable calcium sensor to monitor
spatiotemporal changes of free calcium ions in live cell
experiments.

Conclusion

In conclusion, we developed a new localizable rhodamine
based calcium sensor which can be applied in live cell
imaging. RhoCa-Halo is a localizable highly sensitive calcium
sensor which exhibits an increase of fluorescence upon
calcium-binding, thereby enabling monitoring spatiotemporal
changes of calcium concentrations in living cells. We demon-
strated its application in in vitro and live cell experiments.
Moreover, RhoCa-I serves as a general building block that can
be readily derivatized by Sonogashira cross-coupling to intro-

duce alternative functionalities to the rhodamine calcium
sensor. RhoCa-Halo is the first localizable small molecule
based calcium sensor with excitation in the green spectrum
and represents a valuable addition to the toolbox of calcium
imaging. The sensor can be combined with other sensors
which are spectrally separated. Furthermore, the application of
the HaloTag labeling strategy allows multi-color calcium
imaging of different organelles in living cells when combined
with the orthogonal SNAP-tag based localizable calcium
sensor,11 an Indo-1 derivative with excitation in the near-UV
(Exmax = 350 nm; Emmax = 475 nm). The specific localization of
a fluorescent calcium sensor to any POI has great potential to
study the spatiotemporal regulation of calcium as a second
messenger. Furthermore we would like to point out that the
high photo-stability and specific photo-physical properties of
the rhodamine moiety makes the newly developed RhoCa-Halo
probe a potential candidate for application in super-resolution
microscopy.29
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