Issue 32, 2014

Ordering dynamics in symmetric PS-b-PMMA diblock copolymer thin films during rapid thermal processing

Abstract

The pattern coarsening dynamics in symmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA) block copolymer thin films under conventional thermal treatments is extremely slow, resulting in limited correlation length values even after prolonged annealing at relatively high temperatures. This study describes the kinetics of symmetric block copolymer microphase separation when subjected to a thermal treatment based on the use of a Rapid Thermal Processing (RTP) system. The proposed methodology allows self-organization of symmetric PS-b-PMMA thin films in few seconds, taking advantage of the amount of solvent naturally trapped within the film during the spinning process. Distinct and self-registered morphologies, coexisting along the sample thickness, are obtained in symmetric PS-b-PMMA samples, with periodic lamellae laying over a hexagonal pattern of PMMA cylinders embedded in the PS matrix and perpendicularly oriented with respect to the substrate. The ordering dynamics and morphological evolution of the coexisting dual structures are delineated and the intimate mechanism of the self-assembly and coarsening processes is discussed and elucidated.

Graphical abstract: Ordering dynamics in symmetric PS-b-PMMA diblock copolymer thin films during rapid thermal processing

Supplementary files

Article information

Article type
Paper
Submitted
15 4 2014
Accepted
07 6 2014
First published
09 6 2014

J. Mater. Chem. C, 2014,2, 6655-6664

Author version available

Ordering dynamics in symmetric PS-b-PMMA diblock copolymer thin films during rapid thermal processing

M. Perego, F. Ferrarese Lupi, M. Ceresoli, T. J. Giammaria, G. Seguini, E. Enrico, L. Boarino, D. Antonioli, V. Gianotti, K. Sparnacci and M. Laus, J. Mater. Chem. C, 2014, 2, 6655 DOI: 10.1039/C4TC00756E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements