Recent advancements in ubiquitous colorimetric and fluorometric sensors for the detection of methanol
Abstract
Methanol, an aliphatic alcohol, is a widely recognized volatile organic compound (VOC) extensively used as a cost-effective solvent in various chemical, agricultural, and biological industries. However, the intentional adulteration of alcoholic beverages with inexpensive methanol for economic gain poses significant health hazards, including birth defects, respiratory illnesses, nervous system damage, and various chronic conditions. Prolonged exposure to methanol vapour can result in adverse effects such as eye inflammation, dizziness, headaches, insomnia, stomach problems, visual impairment, and even fatality. Notably, from 2017 to 2019, there were 7104 documented cases of methanol intoxication, resulting in 1888 fatalities across 306 recorded outbreaks of methanol poisoning. Notably, over 90% of these cases reported in Asia. Given the severe health risks associated with methanol, there is an urgent need for dependable detection methods to ensure public safety. One promising approach involves chemosensors capable of detecting methanol through changes in fluorescence or color. This review article provides a comprehensive overview of the latest advancements in methanol detection, categorizing sensors based on their materials, structural attributes, and detection mechanisms. In essence, the review highlights recent research progress in fluorometric and colorimetric methods for methanol detection.
- This article is part of the themed collection: Analytical Methods Review Articles 2024