Microwave-assisted synthesis of polyoxometalate-Dy2O3 monolayer nanosheets and nanotubes†
Abstract
Two-dimensional (2D) materials have shown unique chemical and physical properties; however, their synthesis is highly dependent on the layered structure of building blocks. Herein, we developed monolayer Dy2O3-phosphomolybdic acid (PMA) nanosheets and nanotubes based on microwave synthesis. Microwave-assisted synthesis with high-energy input gives a faster and dynamically driven growth of nanomaterials, resulting in high-purity nanostructures with a narrow size distribution. The reaction times of the nanosheets and nanotubes under microwave synthesis are significantly reduced compared with oven-synthesis. Dy2O3-PMA nanosheets and nanotubes exhibit enhanced activity and stability in photoconductance, with higher sensitivities (0.308 μA cm−2 for nanosheets and 0.271 μA cm−2 for nanotubes) compared to the individual PMA (0.12 μA cm−2) and Dy2O3 (0.025 μA cm−2) building blocks. This work demonstrates the promising application potential of microwave-synthesized 2D heterostructures in superconductors and photoelectronic devices.
- This article is part of the themed collection: 2024 Nanoscale HOT Article Collection