Strategies for breaking molecular scaling relationships for the electrochemical CO2 reduction reaction
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) is a promising strategy for converting CO2 to fuels and value-added chemicals using renewable energy sources. Molecular electrocatalysts show promise for the selective conversion of CO2 to single products with catalytic activity that can be tuned through synthetic structure modifications. However, for the CO2RR by traditional molecular catalysts, beneficial decreases in overpotentials are usually correlated with detrimental decreases in catalytic activity. This correlation is sometimes referred to as a “molecular scaling relationship”. Overcoming this inverse correlation between activity and effective overpotential remains a challenge when designing new, efficient molecular catalyst systems. In this perspective, we discuss some of the concepts that give rise to the molecular scaling relationships in the CO2RR by molecular catalysts. We then provide an overview of some reported strategies from the last decade for breaking these scaling relationships. We end by discussing strategies and progress in our own research designing efficient molecular catalysts with redox-active ligands that show high activity at low effective overpotentials for the CO2RR.
- This article is part of the themed collection: 2022 Frontier and Perspective articles