Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis
Abstract
Next-generation energy technologies have captured increasing research interest because of their fascinating advantages, yet the implementation of such technologies requires efficient and robust electrocatalysts to overcome the sluggish heart reaction kinetics. Sputtered nanostructures, prepared by facile, versatile and green sputtering techniques, exhibit superior electrochemical performances owing to their rich structural motifs and morphological features, demonstrating great potential for boosting the reaction kinetics. Herein, after a brief discussion of the magnetron sputtering technique's basic principles, attention is paid to the discussion of applications of sputtered nanostructures in various types of clean energy conversion reaction, covering the architecture/compositional design, controllable and green synthesis, reaction mechanism, and the electrochemical performances. Moreover, critical insights into active-site densities, synergistic modulation, surface reconstruction and heterostructure design are reviewed. Finally, we conclude by looking forward in terms of how these discussions and understandings open up sputtered nanostructure (as electrode materials) opportunities to facilitate the development of next-generation energy technologies.
- This article is part of the themed collection: Green Chemistry Reviews