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Nanotechnology has introduced a new generation of adsorbents like carbon nanotubes (CNTs), which have

drawn a widespread attention due to their outstanding ability for the removal of various inorganic and or-

ganic pollutants. The goal of this study was to develop regression-based quantitative structure–property re-

lationship (QSPR) models for organic pollutants and organic solvents using only easily computable 2D de-

scriptors to explore the key structural features essential for adsorption to multi-walled CNTs and improve

the dispersibility index of single-walled CNTs. The statistical results of the developed models showed good

quality and predictivity based on both internal and external validation metrics (dataset 1: R2 range of 0.893–

0.920, Q2
(LOO) range of 0.863–0.895, Q2

F1 range of 0.887–0.919; dataset 2: R2 range of 0.793–0.845, Q2
(LOO)

range of 0.743–0.798, Q2
F1 range of 0.783–0.890; dataset 3: R2 = 0.830, Q2

(LOO) = 0.775, Q2
F1 = 0.945). We

have also tried to explore whether the quality of the predictions of test set compounds can be enhanced

through an “intelligent” selection of multiple models using the “Intelligent consensus predictor” tool. The

consensus results suggested that the consensus predictivity of the test set compounds gave better results

than those from the individual MLR models based on different criteria (dataset 1: Q2
F1 = 0.935, Q2

F2 = 0.935,

MAE(95%) = good; dataset 2: Q2
F1 = 0.887, Q2

F2 = 0.879, MAE(95%) = good). The contributed descriptors

obtained from different models suggested that the organic pollutants may adsorb to the CNTs through hy-

drogen bonding interactions, π–π interactions, hydrophobic interactions and electrostatic interaction. Based

on the observations obtained from the developed models, we have inferred that the adsorption of the or-

ganic pollutants onto the CNTs can be enhanced by the following factors: a higher number of aromatic

rings, high unsaturation or electron richness of molecules, the presence of polar groups substituted in the

aromatic ring, the presence of oxygen and nitrogen atoms, the size of the molecules, and the hydrophobic

surface of the molecules. On the other hand, the presence of C–O groups, aliphatic primary alcohols and

the presence of chlorine atoms may retard the adsorption of organic pollutants. The results also suggest

that the organic solvents bearing the >N- fragment, a higher degree of branching (compactness), polar

solvents with low donor number and lower ionization potential may be better solvents for enhancing the

dispersibility of single-walled CNTs.

1. Introduction

A noticeable amount of organic pollutants is released into
the environment via various routes like the burning of fossil
fuels, wastes from incineration, exhausts from automobiles,
agricultural processes and industrial sectors. The disposal of
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Environmental significance

Nanotechnology has introduced a new generation of adsorbents such as carbon nanotubes (CNTs), which have drawn widespread attention due to their
outstanding ability for the removal of various inorganic and organic pollutants. The goal of this study was to develop quantitative structure–property
relationship (QSPR) models to explore the key structural features of organic pollutants, which are essential for adsorption to multi-walled CNTs. We have
also developed models to investigate the characteristics that can improve the dispersibility of single-walled CNTs. This information may be helpful in the
process of removal of the harmful and toxic contaminants/disposal of the by-products from various industries by increasing the adsorption of pollutants
and the dispersibility of CNTs, thus making a pollution-free environment.
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the by-products from the various industries is a challenging
job for environmentalists and industries. The major problem
with pollutants is their effective and safe disposal without
further affecting the environment adversely. The organic pol-
lutants (phenols, cresols, alkyl benzene sulfonates, nitro
chlorobenzene, chlorinated paraffins, butadiene, synthetic
dyes, insecticides, fungicides and pesticides, etc.) accumulate
in the food chain and persist in nature and cause a signifi-
cant threat to the environment.1–4 The United States Environ-
mental Protection Agency (EPA) has set maximum contami-
nation levels (MCLs) and maximum contamination level
goals (MCLG) for each pollutant, with no ill health effects.
Sometimes the MCL level goes beyond the MCLG level be-
cause of the problem in determining small quantities of con-
taminants and due to lack of availability of treatment tech-
nologies and analytical methods.5–14 Thus, for the protection
of the environment, the use of new and advanced materials
is important. In recent years, greater focus has been placed
on nanostructures as adsorbents and catalysts for removing
the harmful and toxic contaminants from the
environment.15–17 Among the various nanomaterial adsor-
bents, carbon nanotubes (CNTs) have been thoroughly inves-
tigated because they have a large surface area to volume ra-
tio, inertness towards chemicals, light mass density, porous
structure, great physical and chemical properties, small di-
ameter, extraordinary optical and electrical properties, high
tensile strength and efficient affinity towards pollutants. The
possibility of surface modification with different functional
groups makes CNTs good adsorbents18–20 and enhances their
reactivity and dispersibility for environmental protection
applications.

SWCNTs have some unique mechanical, electrical and
thermal properties but possess poor solubility as well as poor
dispersibility in aqueous and other common organic sol-
vents.21 They possess high polarizability along with van der
Waals interactions and hydrophobic surface, so they are able
to form aggregates with each other and with other biological
and chemical systems to produce mixtures of aggregates, spe-
cifically in water.22,23 This bundling or entangling feature of
SWCNTs causes difficulties in the dispersion of CNTs in vari-
ous solvents or matrices.24–26 This also prevents the explora-
tion of the chemistry of CNTs at a molecular level and hin-
ders their applications27 as well as limits the availability of
adsorption sites for the adsorption of pollutants on the CNT
surface.28 The morphology variation of CNTs may also result
in a difference in their aggregation tendencies, which may
additionally impact their adsorption capability. The major in-
teractions are van der Waals interactions, π–π stacking, and
hydrophobic interactions for dispersibility, as suggested by
many researchers.29

Hyung et al.30 reported that organic contaminants can
interact with carbon nanotubes in aquatic systems and in-
crease their stability and transport and thus, the mobility of
the adsorbed organic matters on CNTs can be enhanced. The
popularity of CNTs has increased since Long and Yang first
reported that they can efficiently remove dioxins as compared

to activated carbon.31 The sorption studies performed on
CNTs for metal ions32 and organic contaminants, such as bu-
tane,33 trihalomethanes,34 dioxin,31 xylenes,35 chloro-
phenols,36 1,2-dichlorobenzene,37 resorcinol38 and polycyclic
aromatic hydrocarbons (PAHs),15,39 suggest that CNTs can re-
move both organic and inorganic pollutants from water and
gases.

Although a large number of pollutants are reported in the
literature, adsorption data is available for only around 70 000
pollutants.40 The determination of experimental data for a
large number of pollutants is time-consuming as well as labo-
rious and costly. The surface properties of CNTs can be modi-
fied by treating them with some active chemicals so that the
CNTs do not aggregate or form bundles and hence, the dis-
persion of CNTs can be enhanced. QSPR modeling of organic
pollutants/solvents using adsorption properties/dispersibility
index by CNTs can, therefore, be of great importance for re-
searchers and practitioners. The quantitative structure–prop-
erty relationship (QSPR) approach is easier than the thermo-
dynamic model since the input parameters of QSPR can be
more easily obtained as compared to the thermodynamic
models.41 QSPR not only reduces the experimental work but
also predicts the features based on the chemical structures.
Thus, the rationalization ideas obtained from such models
provide the researchers with a conceptual framework upon
which a firm discussion can be based. Recently, a great deal
of work has been done with QSPR and linear surface energy
relationship (LSER) modeling to develop predictive models
for CNTs, including the adsorption of organic chemicals
(OCs) by CNTs,41–47 dispersibility of CNTs in organic
solvents48–51 and other properties similar to CNTs. In the
past, some work has been done by researchers, for example,
linear LSER models were developed by Xia et al.43 using the
biological surface index (BSAI) for the prediction and charac-
terization of the intermolecular adsorption of OCs by CNTs.
Apul et al.45 reported a 3D-QSPR modeling applying the same
data sets for the adsorption of aromatic compounds by CNTs
and compared it with MLR, ANN and SVM methods. Another
QSPR model was reported by Yilmaz et al.48 using additive
descriptors and quantum-chemical descriptors for the deter-
mination of the dispersibility of CNTs in different organic
solvents.

The objective of the present study has been to develop sta-
tistically significant QSPR models of organic pollutants with
multiple-endpoints using only easily computable 2D descrip-
tors to explore the key structural features that are essential
for adsorption to MWCNTs. We have also developed a QSPR
model for organic solvents to investigate the characteristics
of molecules that can improve the dispersibility of SWCNTs
and may overcome the drawbacks of SWCNTs. A variable se-
lection strategy was also employed prior to the development
of final models to reduce noise in the input. We have also
tried to explore whether the quality of predictions of test set
compounds can be enhanced through the “intelligent” selec-
tion of multiple MLR models using an “Intelligent consensus
predictor” tool.
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2. Methods and materials
2.1. Dataset

We have developed QSPR models separately, using three dif-
ferent data sets for diverse organic contaminants with
multiple-endpoints of carbon nanotubes reported in the liter-
ature.41,44,52 The first dataset involves the defined adsorption
affinity properties (k∞) of 59 organic contaminants by multi-
walled carbon nanotubes (MWCNTs). The second dataset in-
volves the adsorption affinity of 69 organic contaminants re-
lated to the specific surface area (kSA) of multi-walled carbon
nanotubes (MWCNTs), and the third data set involves 29 or-
ganic solvents with defined dispersibility index values (Cmax)
for single-walled carbon nanotubes (SWCNTs). We have not
excluded any compound of individual data sets in our model-
ing analysis. All the endpoint values were taken in the loga-
rithmic scale for the modeling purposes. The first two data
sets mainly involve adsorption data for synthetic organic com-
pounds like pyrene, naphthalene, phenol, benzene, aniline,
benzoate, chloroanisole, alcohol, acetophenone, isophoron,
phenanthrene dicamba, atrazine, carbamazepine, pyrimidin-
one, acetamide, piperidine, propionitrile, acrylic acid, thio-
diethanol, ethanolamine, cyclopentanone, acetone and ethyl-
ene glycol derivatives, while the third data set is related to
different types of solvents. The dispersibility of single-walled
carbon nanotubes (SWCNTs) was measured in different sol-
vent ranges. Here, Cmax (mg mL−1) represents the maximum
dispersibility of single-walled carbon nanotubes, K∞ and KSA

are both adsorption coefficients that can be obtained from
isotherm data. K∞ is the ratio of qe and Ce (solid and liquid
phase equilibrium concentrations, respectively, at infinite di-
lution conditions with an average of 0.2% aqueous solubility).
KSA is the normalized value of K∞ and the specific surface area
of multi-walled carbon nanotubes (MWCNTs). The data sets
are given in Tables S1, S2 and S3 in the ESI† section.

2.2. Descriptor calculation

“The molecular descriptor is the final result of a logic and math-
ematical procedure which transforms chemical information
encoded within a symbolic representation of a molecule into a
useful number or the result of some standardized experiments”.
All the dataset compounds were drawn using the Marvin
Sketch software.53 The descriptors were calculated using two
software tools, namely, Dragon software version 6,54 and
PaDEL-descriptor55 software. In this work, we have calculated
only 2D descriptors covering constitutional, ring descriptors,
connectivity index, functional group counts, atom centered
fragments, atom type E-states, 2D atom pairs, molecular
properties (using Dragon software version 6) and ETA indices
(using PaDEL-Descriptor software).

2.3. Data set division

Division of the dataset is a very important step for QSPR. The
present work deals with three datasets containing diverse or-
ganic pollutants or solvents. In each case, all the dataset

compounds were divided into a training set and a test set
using the “Modified k-medoid” clustering technique. The
clustering technique categorizes a set of compounds into
clusters so that the compounds present in the same cluster
are similar to each other. On the other hand, when two com-
pounds belong to two different clusters, they are said to be
dissimilar in nature. The indicative compounds within a clus-
ter are called medoids. This technique tends to select k from
most middle objects or compounds as the initial medoid.
Three clusters were generated for the dataset containing 59
and 29 compounds, while six clusters were generated for the
dataset containing 69 compounds. We have selected approxi-
mately 25% of compounds from each data set for the test set
and the remaining 75% of compounds were selected for the
training set. The purpose of the training set was to develop
the model and the test set was used to validate the model for
prediction purposes. The same strategy was applied in the
case of all three datasets for training and test set division.

2.4. Variable selection and model development

After the dataset division step, we performed data pretreatment
to remove intercorrelated descriptors from all three sets of
datasets. Prior to the development of final models, we tried to
extract the important descriptors from the large pool of initial
descriptors using various variable selection strategies.56,57 In
case of the dataset containing 59 and 69 organic pollutants, we
separately ran a stepwise regression and selected some descrip-
tors in each case. After removing the selected descriptors
obtained from the first stepwise regression run, we ran the step-
wise regression again using the remaining pool of descriptors,
and we repeated the same procedure. In this way, we selected
some manageable numbers of descriptors and made a reduced
pool of descriptors. In the case of the dataset containing 29
compounds, we developed GA equations and made a descriptor
pool using the descriptors obtained from the GA (genetic algo-
rithm) equations. After that, we ran the best subset selection
for all three datasets using the reduced pools of descriptors.
For this, we used a tool developed in our laboratory.58 Five
(three models were selected) and four (two models were se-
lected) descriptor models were generated in the case of the
dataset containing 59 organic pollutants, whereas six (three
models were selected) and five (two models were selected) de-
scriptor models were generated for the dataset containing 69
organic pollutants. Among the equations generated from the
best subset selection, we selected five models, five models and
four models for 59, 69 and 29 compounds, respectively, based
on MAE criteria.59 Descriptors were selected from the GA and
stepwise regression models and a descriptor pool was gener-
ated. Finally, the selected models were run using the intelligent
consensus predictor (ICP) tool developed in our laboratory60 to
explore whether the quality of predictions of external com-
pounds could be enhanced through an “intelligent” selection of
multiple models (in this report, five models were selected).

The multilayered strategies like data pretreatment,58 step-
wise regression,61 genetic method62 and best subset
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selection58 were involved for the selection of variables prior
to the development of the final models and different steps
are discussed separately in the ESI† section.

2.4.1. Intelligent consensus predictor (ICP).60 This soft-
ware was used to judge the performance of consensus predic-
tions in comparison to their quality obtained from the indi-
vidual (MLR) models based on the MAE based criteria (95%).
It is obvious that a single model might not be equally useful
for prediction for the whole test set compounds, which
means that one QSPR model may be the best model for pre-
diction of a test compound while the other model may be the
best predictor for another test compounds. For this reason,
we have selected five models in the case of a dataset
containing 59 (M1–M5) and 69 (N1–N5) organic contami-
nants, and performed consensus prediction using the “Intel-
ligent consensus predictor” tool to explore whether the qual-
ity of the predictions of the test set compounds could be
enhanced through an “intelligent” selection of multiple
models. The steps involved in the development of both MLR
and PLS models are represented schematically in Fig. 1.

2.5. Statistical validation metrics

In order to judge the predictivity and reliability of the devel-
oped QSPR models, we have examined the statistical quality,
applying both internal and external validation metrics. In this
work, we have used various statistical parameters like deter-
mination coefficient R2, explained variance R2

a, variance ratio
(F), and standard error of estimate (s). These parameters are

not sufficient to evaluate the predictive potential of the
model, so we have used some other classical parameters for
validation of the models. The internal predictivity parameters
like the leave-one-out cross-validated correlation coefficient
(Q2

LOO), and external predictivity parameters like R2
pred or Q2

F1,
Q2
F2 and concordance correlation coefficient (CCC), were also

calculated. We also calculated some r2m parameters like
r2m(LOO) and Δr2m(LOO) for internal validation and r2m(test) and
Δr2m(test) for external validation.63 The basic objective of the
predictive performance of QSPR models is to investigate the
prediction errors of an external set, which should be within
the chemical and response-based domain of the internal set
(i.e., training set). The Q2

ext-based metrics (i.e., R2
pred and Q2

F2)
are not always able to provide the correct indication of the
prediction quality because of the influence of the response
range as well as the distribution of the values of response in
both the training and test set compounds.59 Thus, we have
also validated the models using the mean absolute error
(MAE) criteria for both external and internal validation.59 The
error based metrics were used to determine the true indica-
tion of the prediction quality in terms of prediction error
since they do not evaluate the performance of the model in
comparison with the mean response (Roy et al., 2016 (ref.
59)). The threshold values of Q2, Q2

F2, R
2
pred, r

2
m(test), r

2
m(LOO)

are 0.5 and for CCC, it is 0.750.64,65 The limit for Δr2m(test) and
Δr2m(LOO) is 0.2. Recently, Roy et al. reported that a single
model might not be equally useful in the prediction for the
whole test set compounds, i.e., one QSPR model may be the
best model for prediction of a test compound while the other

Fig. 1 Schematic representation of the steps involved in the development of QSPR models.
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model may be the best predictor for another test compound.
For this reason, we have also performed Intelligent consen-
sus prediction (ICP) using multiple QSPR models to deter-
mine whether the quality of the predictions of test set com-
pounds can be enhanced through an “intelligent” selection.
Here, a simple average of predictions from all the models is
not considered; only ‘qualified models’ are taken into
account.

2.6. Applicability domain

“The applicability domain of a (Q)SAR is the physicochemical,
structural, or biological space, knowledge or information on which
the training set of the model has been developed, and for which it
is applicable to make predictions for new compounds. The appli-
cability domain of a (Q)SAR should be described in terms of the
most relevant parameters, i.e., usually those that are descriptors
of the model. Ideally, the (Q)SAR should only be used to make pre-
dictions within that domain by interpolation not extrapolation”.
The AD of the QSAR model is characterized by the molecular
properties of the training set compounds. The AD criteria help
to check whether the test/query compound under consideration
is inside the AD or not. Here, we have checked the applicability
domain of test set compounds of the developed models,
employing the standardization approach (for first two data sets)
using the software developed in our laboratory66 and a DModX
(distance to model X) approach67 at 99% confidence level using
SIMCA-P software68 (for the third data set). The predictability
of a QSPR model is good if the molecules are present within
the domain of the chemical space of the training set
molecules.

2.7. Software used

Marvin Sketch version 5.5.0.1 (ref. 53) was used to draw chem-
ical structures. Descriptors were calculated by the PADEL-
Descriptor software55 and Dragon software version 6.54 Clus-
tering of each data set was done by the “Modified K-Medoid”
tool version 1.3 (ref. 58) for its splitting into a training set and
a test set. Data Pretreatment version 1.2 was used to remove
intercorrelated descriptors. Stepwise regression analysis was
done by the MINITAB software version13.14.69 Genetic Algo-
rithm was done by using the Genetic Algorithm tool version
4.1.58 Best subset selection58 and intelligent consensus predic-
tor tool60 were used to generate the QSPR models.

3. Results and discussion

We have developed QSPR models (five MLR models for each
of the datasets containing 59 and 69 organic contaminants,
and one PLS model for the dataset containing 29 organic
contaminants) for three datasets containing diverse organic
pollutants with defined adsorption affinities for MWCNTs
(for datasets 1 and 2), and the dispersibility index of SWCNTs
(for dataset 3), using reduced descriptors pools obtained by
different strategies as discussed in the Materials and
methods section. We checked the statistical quality of all the

individual models using both internal and external validation
parameters, which showed that the models are statistically
significant (Table 1). We also checked the MAE-based criteria
for all the models.59 All the models passed the MAE-based
criteria.59 Besides the routinely used validation parameters,
we also checked the consensus predictions (for datasets 1 and
2 only) using the developed MLR models employing a newly
developed “Intelligent consensus predictor” tool60 to check
whether the quality of the predictions of the test set com-
pounds can be enhanced through an “intelligent” selection of
multiple MLR models. We found that the consensus predic-
tions of multiple MLR models are better (based on MAE based
criteria) than the results obtained from the individual models
as shown in Table 1 (here, in both cases, the winner model is
CM3). It was also found that the consensus predictions of the
test set compounds are better as compared to the individual
MLR models based on not only the MAE-based criteria but
also the other external validation metrics used in this work as
shown in Table 1. All the individual models are mentioned be-
low and the descriptors are discussed elaborately. In the equa-
tion, ntraining is the number of compounds used to develop
the models and ntest is the number of compounds used for
the external prediction of the developed models. The values of
leave-one-out (LOO) cross-validated correlation coefficient
(Q2) (Q2 in the range of 0.863–0.895 for dataset 1; 0.743–0.798
for data set 2 and 0.775 for dataset 3) above the critical value
of 0.5 signify the statistical reliability of the models. The pre-
dictability of the models was judged by means of predictive
R2 (R2

pred) or Q2
F1 (Q2

F1 range of 0.887–0.919 for dataset 1;
0.783–0.890 for data set 2 and 0.945 for dataset 3) and Q2

F2

(Q2
F2 range of 0.886–0.919 for dataset 1; 0.768–0.882 for data

set 2 and 0.938 for dataset 3), which show the good predictive
ability of the models. The statistical results of all the models
are summarized in Table 1. The PLS model developed from
dataset 3 was also validated using a randomization test
through randomly reordering (100 permutations) the depen-
dent variable (logCmax) using the SIMCA-P software.68 Here,
the intercept values for both R2 and Q2 are below the stipu-
lated values (R2

int < 0.4 and Q2
int < 0.05), which confirmed

that the developed model was not obtained by chance (Fig.
S1 in ESI†). We have also checked the intercorrelation
among the modeled descriptors for MLR models based on
the Pearson correlation coefficient using the SPSS soft-
ware.70 The results showed that there is no intercorrelation
between the modeled descriptors.

From the observations obtained from the modeled de-
scriptors, it has been found that the organic pollutants may
interact with the MWCNTs through different mechanisms
like hydrogen bonding interactions, hydrophobic interac-
tions, π–π interactions and electrostatic interactions as
discussed below.

3.1. Dataset 1 : 59 organic pollutants

The significant descriptors obtained from the five MLR
models (see Models M1–M5) for the adsorption properties
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(logKα) of 59 organic chemicals on MWCNTs are X0v,
nArOH, B01[C–O], B06[C–Cl], Ui, F03[O–O], F04[N–O],
ETA_BetaP, minsCH3, B03[O–O] and nHBint4, which regulate
the adsorption properties of the organic pollutants. The con-
tribution of the descriptors can be easily identified from the
regression coefficient of the independent variables. In this
case, all the descriptors contributed positively (positive re-
gression coefficients), except the B01[C–O] descriptor (nega-
tive regression coefficient). The definition, contribution and
frequency of the contributed descriptors are shown in Table
S4 in the ESI.† We have checked the applicability domain of
the developed MLR models using the standardization ap-
proach to confirm whether there is any compound present
outside the applicability domain or not. It was found that
one compound (compound number 41) for model M1 is situ-
ated outside the applicability domain, while compound num-
ber 56 is situated outside the domain of applicability in case
of models M2, M3, M4 and M5; however, these compounds
showed good predictivity based on the models. The scatter
plot of the observed vs. predicted adsorption coefficient for
all the MLR models are shown in Fig. 2.

Model M1. log k∞ = −4.62(±0.337) + 0.834(±0.155) × Ui
+ 0.663(±0.220) × B06[C–Cl]
+ 0.641(±0.057) × X0v
+ 0.600(±0.091) × nArOH
− 0.611(±0.121) × B01[C–O]

n R R S Ftraining adj

PRESS

    



44 0 920 0 908 0 294 85 93

4

2 2, . , . , . , . ,

.2267 0 895 0 851

0 078

2 2

2

, . , . ,

. , ,

Q r

r

 

  

 

 

m LOO

m LOO MAE Good

n Q Q r rtest F1 F2 m test m test        15 0 887 0 886 0 7452 2 2 2, . , . , . , 00 104

0 934

. ,

. ,CCC MAE Good 

Model M2. log k∞ = −8.51(±0.722) + 0.803(±0.048) × X0v
+ 0.681(±0.146) × F03[O–O]
+ 0.415(±0.144) × F04[N−O]
+ 3.27(±0.491) × ETA_BetaP
+ 0.204(±0.067) × minsCH3

Fig. 2 The scatter plot of the observed and the predicted adsorption coefficient property (logK∞) of the developed MLR models (models M1–M5).
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n R R S Ftraining adj

PRESS

    



44 0 912 0 900 0 306 78 66

4

2 2, . , . , . , . ,

.3356 0 892 0 848

0 079

2 2

2

, . , . ,

. , ,

Q r

r

 

  

 

 

m LOO

m LOO MAE Good

n Q Q r rtest F1 F2 m test m test        15 0 916 0 915 0 8172 2 2 2, . , . , . , 00 072

0 952

. ,

. ,CCC MAE Good 

Model M3. log k∞ = −8.68(±0.746) + 0.802(±0.050) × X0v
+ 0.603(±0.272) × B03[O–O]
+ 3.39(±0.503) × ETA_BetaP
+ 0.213(±0.069) × minsCH3

+ 0.412(±0.148) × nHBint4

n R R S Ftraining adj

PRESS

    



44 0 905 0 893 0 318 72 57

4

2 2, . , . , . , . ,

.8840 0 880 0 832

0 075

2 2

2

, . , . ,

. , ,

Q r

r

 

  

 

 

m LOO

m LOO MAE Good

n Q Q r rtest F1 F2 m test m test        15 0 919 0 919 0 8252 2 2 2, . , . , . , 00 069

0 954

. ,

. ,CCC MAE Good 

Model M4. log k∞ = −8.72(±0.782) + 0.785(±0.052) × X0v
+ 0.650(±0.158) × F03[O–O]
+ 3.51(±0.527) × ETA_BetaP
+ 0.202(±0.073) × minsCH3

n R R S Ftraining adj

PRESS

    



44 0 893 0 882 0 334 81 11

5

2 2, . , . , . , . ,

.1164 0 872 0 821

0 092

2 2

2

, . , . ,

. , ,

Q r

r

 

  

 

 

m LOO

m LOO MAE Good

n Q Q r rtest F1 F2 m test m test        15 0 918 0 917 0 8062 2 2 2, . , . , . , 00 074

0 953

. ,

. ,CCC MAE Good 

Model M5. log k∞ = −8.42(±0.773) + 0.785(±0.052)X0v
+ 3.29(±0.526)ETA_BetaP
+ 0.199(±0.072)minsCH3

+ 0.566(±0.137)nHBint4

n R R S Ftraining adj

PRESS

    



44 0 893 0 882 0 333 81 33

5

2 2, . , . , . , . ,

.5543 0 863 0 808

0 086

2 2

2

, . , . ,

. , ,

Q r

r

 

  

 

 

m LOO

m LOO MAE Good

n Q Q r rtest F1 F2 m test m test        15 0 915 0 914 0 7982 2 2 2, . , . , . , 00 076

0 950

. ,

. ,CCC MAE Good 

3.1.1. The descriptors related to hydrogen bonding inter-
actions. The functional group count descriptor, nArOH, repre-

sents the number of aromatic hydroxyl groups present in the
compound. This descriptor influences the adsorption proper-
ties of organic pollutants by MWCNTs as indicated by its pos-
itive regression coefficient. Thus, the compounds containing
a large number of aromatic hydroxyl groups may enhance the
adsorption properties of organic pollutants by MWCNTs as
shown in compounds 13 (pyrogallol) (containing 3-OH
groups), 5 (2-phenyl phenol) (containing 1-OH group) and 14
(2,4,6 trichlorophenol) (containing 1-OH group). On the other
hand, the compounds containing no aromatic hydroxyl
groups are detrimental for the adsorption affinity of organic
pollutants by MWCNTs as shown in compounds 18
(4-chloroaniline), 36 (benzyl alcohol) and 42 (phenethyl alco-
hol) (these compounds contain no aromatic hydroxyl groups).
Although some compounds containing no aromatic hydroxyl
groups still show high adsorption affinity for the organic pol-
lutants by MWCNTs, it is due to some other dominating de-
scriptors present in the model. Thus, the substitution of
electron donating groups like hydroxyl groups in the aro-
matic ring of organic pollutants could enhance the adsorp-
tion on MWCNTs.

A 2D atom pair descriptor, F04[N–O], indicates the fre-
quency of the N–O fragment at topological distance 4. The
positive regression coefficient of the descriptor suggests that
an increase in N–O fragments at topological distance 4 is di-
rectly proportional to the adsorption affinity of organic pol-
lutants. The greater number of fragments correlates to higher
adsorption properties as observed in the case of compounds
19 (2-nitroaniline) and 27 (3-nitrophenol), while the absence
of such fragments at topological distance 4 has no influence
on the adsorption by MWCNTs as shown in compounds 18
(4-chloroaniline), 36 (benzyl alcohol) and 42 (phenethyl-
alcohol). This descriptor also indicates that the frequency of
two electronegative atoms of organic pollutants (electron do-
nating or electron withdrawing groups) should be situated at
topological distance 4 for better adsorption on MWCNTs. In
the case of compound number 19, nitrogen (–NH2 group)
acts as an electron donor and oxygen (–NO2 group) acts as an
electron withdrawing group, whereas in the case of com-
pound number 27, nitrogen (–NO2 group) acts as an electron
withdrawing group, and oxygen (–OH group) acts as an
electron donating group.

The E-state descriptor, nHBint4 indicates the count of po-
tential internal hydrogen bonds separated by four edges. The
positive regression coefficient suggests that hydrogen bonds
of organic pollutants have the propensity to play a dominant
role in enhancing the adsorption properties. Thus, the or-
ganic pollutants bearing hydrogen-bonded groups separated
by four path lengths are conducive to adsorption as shown in
compounds 13 (pyrogallol), 19 (2-nitroaniline) and 48
(3-chlorophenol), whereas the absence of such fragment in
organic pollutants are detrimental to the adsorption affinity
as shown in compounds 6 (benzene), 11 (phenol) and 42 (ph-
enethyl alcohol).

B03[O–O] is a 2D atom pair descriptor that indicates the
presence or absence of the O–O fragment at topological
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distance 3. The positive regression coefficient of the descrip-
tor indicates that the higher the frequency of this fragment,
the higher is the adsorption affinity. Thus, the presence of
the O–O fragment at topological distance 3 favors the adsorp-
tion of organic pollutants by MWCNTs as shown in com-
pounds no. 12 (catechol) and 13 (pyrogallol), while com-
pounds no. 6 (benzene), 42 (phenethyl alcohol) and 36
(benzyl alcohol) show low adsorption because these com-
pounds have no such fragments at topological distance 3.

Hydrogen bonding is one of the key mechanisms for the
adsorption of organic contaminants on CNTs. The informa-
tion obtained from the descriptors nArOH, F04[N–O],
nHBint4, F03[O–O] and B03[O–O] suggested that there may
be some hydrogen bonding interactions between organic pol-
lutants and MWCNTs, which regulate the adsorption affinity
(Fig. 3) of organic pollutants toward MWCNTs. In the case of
the descriptor nArOH, the aromatic hydroxyl group may form
hydrogen bonds with the hydroxy/carboxylic groups on the
CNTs surface and the hydrogen bonds may also form be-
tween the surface-adsorbed aromatic hydroxyl group-
containing organic pollutants (phenolics) and dissolved phe-
nolics. Here, the hydroxyl group is always connected to an ar-
omatic ring. Thus, it is obvious that this aromatic ring of or-
ganic pollutants themselves can interact with CNTs by π–π

interactions. The descriptor, F04[N–O], also suggested that
besides the hydrogen bonding interactions, there may also be
a chance to form electrostatic interactions. The electron-
withdrawing groups like NO2 may also strengthen the π–π in-
teractions formed between the benzene derivatives (acting as
π-acceptor) and CNTs (acting as π-donor). In the case of
B03[O–O], two oxygen atoms (hydroxyl groups) are separated
by topological distance 3 and can interact with CNTs by hy-
drogen bonding interactions. These two electronegative
atoms of organic pollutants could also interact electrostati-
cally with CNTs and strengthen the π–π interactions formed
between the organic pollutants and MWCNTs.39,71 It is worth
noting that although the C–O bond is detrimental to the ad-
sorption of organic pollutants on CNTs, the frequency of the
O–O fragment at topological distance 3 can suppress the det-
rimental effect of the C–O group and influence the adsorp-
tion affinity of organic pollutants on MWCNTs. The descrip-
tors involved in the hydrogen bonding interactions between
the organic pollutants and MWCNTs are depicted in Fig. 3.

3.1.2. The descriptors related to hydrophobic interactions.
A 2D atom pair descriptor, B06[C–Cl], represents the presence
or absence of the C–Cl bond at topological distance 6. The
positive regression coefficient of this parameter suggests that
the presence of such a fragment at topological distance 6 en-
hances the adsorption affinity of organic pollutants towards
the MWCNTs as shown in compounds 50
(4-chloroacetophenone) and 57 (2-chloronapthlene). On the
other hand, compounds like 11 (phenol), 22 (4-methylphenol)
and 43 (3-methylbenzyl alcohol) show poor adsorption affinity
for the MWCNTs due to the absence of such a fragment.

The descriptor X0v indicates a valence connectivity index
of the order 0, which can be calculated through Kier and

Hall's connectivity index as shown below. This descriptor
contributed positively to the adsorption affinity of organic
pollutants for the MWCNTs. Thus, the size of the organic pol-
lutants plays a crucial role in regulating the adsorption affin-
ity of organic pollutants to MWCNTs. It has been found that
on increasing the numerical value of this descriptor, the ad-
sorption affinity of organic pollutants for MWCNTs also in-
creases, as shown in the case of compounds 1 (pyrene), 58
(azobenzene) and 5 (2-phenyl phenol) (bigger in size), while
the adsorption affinity of organic pollutants for MWCNTs de-
creases in the case of compounds 6 (benzene), 11 (phenol)
and 36 (benzyl alcohol) (smaller in size).

The valence connectivity index of the zeroth order can be
calculated by the following:

X v v0
0 5

1
  


  i
i

n .

 i
i

i i

Z hi
Z Z

v
v

v


 1

In the above equation, δvi = the valence vertex degree, Zvi =
valence electrons in the ith atom, hi = the number of hydro-
gen atoms connected to the ith atom, Zi = the number of
electrons in the ith atom.

The E-state indices of a particular atom in a certain mole-
cule provide information on its electronic state of that partic-
ular atom, which in turn depends on π bonds, the lone pair
of electrons and ∂ bonds that inform the quantitative avail-
ability of the valence electrons.72 The descriptor minsCH3 in-
dicates the minimum atom type E-state CH3. The positive re-
gression coefficient of this descriptor indicates that the
presence of the CH3 group has an important role in influenc-
ing the adsorption properties of organic pollutants. The nu-
merical value of this descriptor is directly proportional to the
adsorption property, which suggests that with increasing the
numerical value of this descriptor, the adsorption affinity of
the organic pollutants also increases as evidenced by com-
pounds 10 (2,4-dinitrotoluene), 50 (4-chloroacetophenone)
and 52 (1-methylnaphtalene). On the other hand, the adsorp-
tion affinity of organic pollutants decreases with the absence
of the CH3 group as shown in compounds 6 (benzene), 11
(phenol) and 36 (benzyl alcohol).

Hydrophobic interactions between organic pollutants and
CNTs are also an important mechanism for better adsorp-
tion. The descriptors, B06[C–Cl], X0v and minsCH3 suggest
that the organic pollutants may be adsorbed onto the
MWCNTs by hydrophobic interactions. In the case of B06[C–
Cl] and X0v, the size of the molecules (for B06[C–Cl], the dis-
tance between C and Cl atoms is six, which reflects the size
of the molecules) plays an important role in the adsorption
affinity. The size enhances the surface area of molecules,
which can regulate the hydrophobic interactions between or-
ganic pollutants and MWCNTs. The methyl group (informa-
tion obtained from minsCH3 descriptor) and CNTs are hydro-
phobic in nature. Thus, an increase in the minsCH3 value
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would indicate a higher degree of unsaturation and would
enhance the reactivity. There is, therefore, a chance for hy-
drophobic interactions between organic pollutants and
MWCNTs, which reflects better adsorption. The descriptors
involved in hydrophobic interactions between organic pollut-
ants and CNTs are depicted in Fig. 4.

3.1.3. The descriptors related to π–π interactions. The de-
scriptor, Ui, gives information about the unsaturation index,
which contributes positively to the adsorption affinity of or-

ganic pollutants by MWCNTs as indicated by the positive re-
gression coefficient. From this descriptor, it has been
suggested that the presence of unsaturated inorganic pollut-
ants plays a crucial role in enhancing the adsorption affinity.
This was demonstrated in compounds 1 (pyrene), 10 (2,4-
dinitrotoluene) and 58 (azobenzene) (the numerical values of
this descriptor are 3.392, 3 and 3, respectively), and vice versa
in the case of compounds 11 (phenol), 36 (benzyl alcohol)
and 42 (phenethyl alcohol) (the numerical values of this

Fig. 3 Mechanistic interpretation of the descriptors related to hydrogen bonding interactions between organic pollutants and MWCNTs (dataset 1).

Fig. 4 Mechanistic interpretation of the descriptors related to the hydrophobic interaction between organic pollutants and MWCNTs (dataset 1).
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descriptor are 2 in each compound). Here, the compounds, 1
(pyrene), 10 (2,4-dinitrotoluene) and 58 (azobenzene) have a
higher range of unsaturation index values due to the pres-
ence of a large number of double bonds.

The ETA index, ETA_BetaP, gives a measure of sigma, pi
and non-bonded (i.e., lone pairs capable of forming resonance
with the aromatic system) electrons relative to the molecular
size. Therefore, electron-richness (unsaturation) relative to
the molecular size of organic pollutants is an important pa-
rameter for regulating the adsorption properties. The positive
regression coefficient of this parameter indicates that the
electron densities of the molecules should be higher for in-
creasing the adsorption affinity of organic pollutants for
MWCNTs, as found in compounds 1 (pyrene), 28 (1,3-
dinitrobenzene) and 58 (azobenzene), whereas the compounds
with low electron density show a lower range of adsorption af-
finities as shown in compounds 36 (benzyl alcohol), 42 (ph-
enethyl alcohol) and 43 (3-methylbenzyl alcohol). Thus, it can
be concluded that the molecules should be electron-rich for
higher adsorption properties of organic pollutants.

The π–π interaction is another important mechanism in-
volved in the adsorption of organic pollutants to CNTs. The
information obtained from Ui and ETA_BetaP descriptors
suggested that the organic pollutants can adsorb to MWCNTs
by strong π–π interactions. The descriptors B03[O–O], F03[O–

O] and F04[N–O] suggested that the [O–O] fragments at topo-
logical distance 3 and the [N–O] fragments at the topological
distance 4 may strengthen the π–π interactions formed be-
tween organic pollutants and MWCNTs. The descriptor Ui
suggested that unsaturation plays a crucial role for the ad-
sorption of organic pollutants to MWCNTs. CNTs also con-

tain a large number of double bonds (unsaturation), so there
is a chance to form strong π–π interactions between organic
pollutants and MWCNTs, which reflects the better adsorption
of these pollutants to MWCNTs; hence, a higher number of
double bonds of organic pollutants enhance the adsorption
affinity to MWCNTs. The descriptor, ETA_BetaP suggested
that unsaturation (electron-richness) relative to the molecular
size of organic pollutants plays a crucial role in regulating
the adsorption properties. From this descriptor, it can be in-
ferred that the adsorption affinity of organic pollutants to
MWCNTs is increased due to the π–π interactions. The de-
scriptors involved in π–π interactions between organic pollut-
ants and CNTs are described graphically in Fig. 5.

3.1.4. The descriptors related to electrostatic interactions.
F03[O–O], a 2D atom pair descriptor, indicates the frequency
of the O–O fragment at topological distance 3. The positive
regression coefficient of this descriptor suggests that pres-
ence of a greater number of O–O bonds at the topological dis-
tance 3 might be beneficial for the adsorption affinity of or-
ganic pollutants for MWCNTs as shown in compounds 12
(catechol) and 13 (pyrogallol), whereas the opposite happens
in the case of compounds 6 (benzene), 42 (phenethyl alcohol)
and 43 (3-methylbenzyl alcohol) (where, no O–O fragment is
present at topological distance 3). This fragment may also
strengthen the π–π interactions formed between organic pol-
lutants and MWCNTs.73,74 Like B03[O–O], this descriptor also
suppresses the detrimental effect of the C–O group as
discussed earlier in this section.

The information obtained from the descriptors, F03[O–O],
B03[O–O] and F04[N–O] suggests that the organic pollutants
can adhere to the surface of the MWCNTs by strong

Fig. 5 Mechanistic interpretation of the descriptors related to the π–π interactions between organic pollutants and MWCNTs (dataset 1).
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electrostatic interactions. The descriptors F03[O–O] and
B03[O–O] indicate that the frequency or presence/absence of
two electronegative atoms (electron donating group) at the to-
pological distance 3 is essential to enhance the adsorption af-
finity of organic pollutants to MWCNTs. Thus, there may be
a chance to form electrostatic interactions between organic
pollutants (negatively charged atom like oxygen atom of the
hydroxyl group) and MWCNTs (the sidewall of the CNTs are
electrically polarizable and thus polar molecules can easily
adhere to their surface). The descriptors involved for electro-
static interactions between organic pollutants and CNTs are
represented graphically in Fig. 6.

The 2D atom pair descriptor, B01[C–O], indicates the pres-
ence or absence of the C–O bond at topological distance 1.
The negative regression coefficient of the descriptor supports
that the presence of this fragment at topological distance one
is detrimental to the adsorption affinity of organic pollutants
by MWCNTs, though it can form hydrogen bonds with
MWCNTs. For example, compounds like 1 (pyrene), 57
(2-chloronaphthalene) and 58 (azobenzene) have higher ad-
sorption affinity value due to the absence of such fragments
at topological distance 1, whereas compounds like 11 (phe-
nol), 36 (benzyl alcohol) and 42 (phenethyl alcohol) have
lower adsorption affinity due to the presence of one C–O
bond in each compound.

3.2. Dataset 2 : 69 organic pollutants

The significant descriptors obtained from the five MLR
models using the adsorption properties (logKSA) of 69 or-
ganic pollutants related to the specific surface area of

MWCNTs are Eta_Epsilon_3, X1A, X2A, nOHp, VAdjMat,
F04ĲO–Cl), B05ĲO–Cl), MLOGP2, T(N⋯N), O%, and T(O⋯Cl).
We have discussed here all the significant descriptors, which
are the key properties for altering the adsorption properties
of organic pollutants. The definition, contribution and fre-
quency of the modeled descriptors are shown in Table S5 in
the ESI.† The applicability domain of the developed models
using the standardization approach showed that one test set
compound (compound number 10) for model N1, two test set
compounds (compound number 10 and 21) for model N2,
one test set compound (compound number 21) for model N3
are situated outside the applicability domain, while in the
case of model nos. 4 and 5, all the test set compounds are sit-
uated within the domain of applicability. The scatter plot of
observed vs. predicted adsorption coefficient related to the
specific surface area of MWCNTs for all the MLR models are
shown in Fig. 7.

Model N1. logKSA = 4.29(±2.194) + 0.0965(±0.014) × O%
− 16.4(±4.397) × X1A + 0.145(±0.032)
× T(N⋯N) − 0.0279(±0.009)
× T(O⋯Cl) − 1.01(±0.294)
× B05(Cl⋯Cl) + 0.203(±0.022)
× MLOGP2

n R R Q Straining adj

PRESS

     52 0 845 0 824 0 798 0 4332 2 2, . , . , . , . ,

  

  

 

 

11 003 40 79 0 709

0 087

2

2

. , . , . ,

. ,

F r

r
m LOO

m LOO MAE Moderatte

Fig. 6 Mechanistic interpretation of the descriptors related to the electrostatic interactions between organic pollutants and MWCNTs (dataset 1).
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n Q Q r rtest F1 F2 m test m test        17 0 809 0 795 0 7832 2 2 2, . , . , . , 00 048

0 908

. ,

. ,CCC MAE Moderate 

Model N2. logKSA = −7.19(±0.571) + 0.0805(±0.015) × O%
− 0.662(±0.323) × nOHp
− 0.0358(±0.009) × T(O⋯Cl)
− 0.943(±0.294) × B05(Cl⋯Cl)
+ 0.185(±0.019) × MLOGP2
+ 0.958(±0.144) × VAdjMat

n R R Q Straining adj

PRESS

     52 0 842 0 821 0 790 0 4372 2 2, . , . , . , . ,

  

  

 

 

11 41 39 97 0 723

0 114

2

2

. , . , . ,

. ,

F r

r
m LOO

m LOO MAE Moderatee

n Q Q r rtest F1 F2 m test m test        17 0 830 0 818 0 8052 2 2 2, . , . , . , 00 050

0 918

. ,

. ,CCC MAE Good 

Model N3. logKSA = −42.3(±7.527) + 0.0973(±0.013) × O%
− 0.622(±0.323) × nOHp
+ 0.154(±0.031) × T(N⋯N)
− 0.0407(±0.008) × T(O⋯Cl)
+ 0.160(±0.20) × MLOGP2
+ 89.8(±17.51) × ETA_Epsilon_3

n R R Q Straining adj

PRESS

     52 0 842 0 821 0 788 0 4362 2 2, . , . , . , . ,

  

  

 

 

11 512 40 07 0 714

0 081

2

2

. , . , . ,

. ,

F r

r
m LOO

m LOO MAE Good

Fig. 7 The scatter plots of the observed and the predicted adsorption coefficient properties related to the specific surface area of MWCNTs (log
KSA) of the developed MLR models (models N1–N5).
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n Q Q r rtest F1 F2 m test m test        17 0 783 0 768 0 7122 2 2 2, . , . , . , 00 14

0 890

. ,

. ,CCC MAE Good 

Model N4. logKSA = −42.0(±7.743) + 0.101(±0.014) × O%
+ 0.159(±0.032) × T(N⋯N)
− 0.0411(±0.008) × T(O⋯Cl)
+ 0.168(±0.021) × MLOGP2
+ 88.9(±18.01) × ETA_Epsilon_3

n R R Q Straining adj

PRESS

     52 0 829 0 811 0 785 0 4492 2 2, . , . , . , . ,

  

  

 

 

11 722 44 73 0 709

0 087

2

2

. , . , . ,

. ,

F r

r
m LOO

m LOO MAE Good

n Q Q r rtest F1 F2 m test m test        17 0 812 0 799 0 7482 2 2 2, . , . , . , 00 044

0 903

. ,

. ,CCC MAE Moderate 

Model N5. logKSA = 2.49(±1.36) + 0.0757(±0.016) × O%
− 17.3(±3.773) × X2A + 0.145(±0.036)
× T(N⋯N) − 0.721(±0.144)
× F04(O⋯Cl) + 0.158(±0.023)
× MLOGP2

n R R Q Straining adj

PRESS

    



 52 0 793 0 77 0 743 0 4952 2 2, . , . , . , . ,

113 955 35 17 0 709

0 087

2

2

. , . , . ,

. ,

F r

r

 

  

 

 

m LOO

m LOO MAE Good

n Q Q r rtest F1 F2 m test m test        17 0 890 0 882 0 8362 2 2 2, . , . , . , 00 090

0 940

. ,

. ,CCC MAE Good 

3.2.1. The descriptors related to the hydrophobic interac-
tion. The descriptor, X1A, indicates an average connectivity
index of the order one, it encodes the ‘chi’ value across one
bond, which can be calculated on the basis of Kier and Hall's
connectivity index and defined as follows:

1 0 5

1
X    


  i j b
b

B .

In this equation, b runs over the 1st order subgraphs hav-
ing n vertices with B edges; δi and δj are the number of other
vertices attached to vertex i and j, respectively. The negative
regression coefficient of this descriptor implies that the
higher numerical values of this descriptor are not favorable
to enhance the adsorption properties of organic pollutants re-
lated to the specific surface area of MWCNTs as shown in
compounds 3 (benzene), 56 (ethylbenzene) and 57 (benzyl al-

cohol) (the corresponding numerical values of these com-
pounds are 0.5, 0.491, 0.491, respectively, showing a lower
range of adsorption affinity). On the other hand, compounds
like 35 (tetracycline), 22 (pyrene) and 26 (phenanthrene)
show better adsorption affinity (logKSA) due to their lower
numerical values of this descriptor.

Another significant descriptor, X2A, indicates an average
connectivity index of the order 2, and encodes the ‘chi’ value
across two bonds, which can be calculated on the basis of
Kier and Hall's connectivity index, defined in the following
equation:

2 0 5

2
X    


  i j b
b

B .

Here, b runs over the 2nd order subgraphs having n verti-
ces with B edges, δi and δj are the numbers of other vertices
attached to vertex i and j, respectively. This descriptor also
has a negative contribution towards the adsorption profile
(logKSA) of organic pollutants by MWCNTs as evidenced by
the negative regression coefficient. This indicates that the ad-
sorption properties of organic pollutants decrease with an in-
crease in the numerical value of this descriptor as shown in
compounds 3 (benzene), 18 (aniline) and 40 (bromobenzene),
and vice versa in the case of compounds 22 (pyrene), 26
(phenanthrene) and 35 (tetracycline).

The VAdjMat descriptor represents the vertex adjacency in-
formation and gives information about molecular dimension
and hydrophobicity. This descriptor can be calculated by
using the following formula:

VAdjMat = 1 + log2(m)

Here, m depicts the number of heavy–heavy bonds. This
descriptor contributed positively towards the adsorption
properties (logKSA) of organic pollutants as indicated by the
positive regression coefficient. Thus, the higher numerical
value of this descriptor is influential toward the adsorption
affinity of organic pollutants. This indicates that hydropho-
bicity plays a crucial role in altering the adsorption properties
of organic pollutants by MWCNTs. For example, compounds
22 (pyrene), 26 (phenanthrene) and 35 (tetracycline) show a
higher range of adsorption properties as these compounds
contain higher numerical values of this descriptor. Com-
pounds 3 (benzene), 55 (iodobenzene) and 46 (chloroben-
zene) show a lower range of adsorption properties as these
compounds contain higher numerical values of this descrip-
tor. It is therefore suggested that the hydrophobic organic
pollutants can easily be adsorbed by MWCNTs through hy-
drophobic interactions between the pollutants and CNTs.

The next descriptor, MLOGP2, represents the squared
Moriguchi octanol–water partition coefficient, calculated
from the regression equation of the Moriguchi logP
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model75,76 consisting of 13 parameters as depicted in the fol-
lowing equation.

log P = −1.244(CX)0.6 − 1.017(NO)0.9 + 0.406PRX − 0.145(UB)0.8

+ 0.511HB + 0.268POL − 2.215AMP + 0.912ALK
− 0.392RNG − 3.684QN + 0.474NO2 + 1.582NCS
+ 0.773BLM − 1.041

‘CX’ depicts the summation of the weighted number of
carbon atoms; ‘NO’ depicts the total number of N and O
atoms; ‘PRX’ represents the proximity effect of N/O; ‘UB’ rep-
resents the number of unsaturated bonds including semi-
polar bonds; ‘POL’ depicts the number of aromatic polar sub-
stituents; ‘AMP’ depicts the amphoteric property; ‘ALK’ rep-
resents the dummy variable for alkanes and alkenes; ‘RNG’
depicts the indicator variable for the presence of a ring struc-
ture, except for benzene and its condensed ring; ‘QN’ repre-
sents quaternary nitrogen; ‘NO2’ represents the number of
nitro groups; ‘HB’ represents a dummy variable for the pres-
ence of intermolecular hydrogen bonds; ‘NCS’ depicts iso-
thiocyanato or thiocyanato; ‘BLM’ represents a dummy vari-
able for the presence of β-lactam.

The positive regression coefficient of this descriptor indi-
cates that hydrophobicity plays a crucial role in regulating
the adsorption properties of organic pollutants. The highly
hydrophobic organic pollutants can easily be adsorbed by
MWCNTs as evidenced by compounds 22 (pyrene), 26 (phen-
anthrene) and 34 (azobenzene) as their corresponding
MLOG2 values are 22.653, 18.762 and 10.539, respectively,
whereas hydrophilic molecules are poorly adsorbed by
MWCNTs as evidenced by compounds 18 (aniline), 57

(benzylalcohol) and 63 (3-nitroaniline) as their corresponding
MLOGP2 values are 2.268, 2.532 and 1.816 respectively.
Therefore, it can be inferred that the organic pollutants are
adsorbed onto the CNTs through hydrophobic interactions.
Thus, for proper adsorption, organic pollutants should be hy-
drophobic in nature. Note that this was also observed in the
case of the VAdjMat descriptor as discussed previously.
MLOGP2 is not strictly a 2D descriptor. Here, the term ‘intra-
molecular H-bonds’ is used to calculate the MLOGP value,
which is conformation dependent.

The information obtained from the descriptors X1A, X2A,
VAdjMat and MLOGP2 suggested that the adsorption of or-
ganic pollutants related to the specific surface area of
MWCNTs may occur through hydrophobic interactions. The
molecular connectivity index (X1A and X2A) has a direct rela-
tionship with the count of interacting C–H bonds present in
a molecule. The number of C–H bonds in a molecule is equal
to the number of H atoms. As the C–H bond increases, the
hydrophobicity of the molecule increases. The δ value (de-
pends on the number of H atoms, the definition of a δ value
for a carbon atom in a molecular graph is: δ = 4 − H) de-
creases with the average connectivity index. Thus, the hydro-
phobic interactions between the organic contaminants and
MWCNTs are reduced and the adsorption of organic pollut-
ants related to the specific surface area of MWCNTs may also
be reduced.77

The descriptors VAdjMat and MLOGP2 give information
about the hydrophobicity of molecules. It is obvious that the
hydrophobic organic pollutants will interact with hydropho-
bic CNTs through hydrophobic interactions. This implies that
the hydrophobic organic pollutants can be easily adsorbed by

Fig. 8 Mechanistic interpretation of the descriptors related to the hydrophobic interactions between organic pollutants and MWCNTs (dataset 2).
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MWCNTs through hydrophobic interactions. The descriptors
involved for hydrophobic interaction are graphically depicted
in Fig. 8.

3.2.2. The descriptors related to the π–π interactions. A
functional group count descriptor, nOHp, describes the num-
ber of primary alcohols. The negative regression coefficient
of this descriptor points out that the primary alcoholic group
is not favored to enhance the adsorption properties (logKSA)
of organic pollutants as found in compounds 13 (3-methyl
benzyl alcohol) and 57 (benzyl alcohol). On the contrary, or-
ganic pollutants that do not contain any primary alcoholic
groups have higher adsorption affinities (logKSA) as shown in
compounds 22 (pyrene), 26 (phenanthrene) and 34
(azobenzene). Thus, the organic pollutants that do not con-
tain any primary alcoholic groups may be highly adsorbed by
MWCNTs.

F04[O–Cl] is a 2D atom pair descriptor that indicates the
number of (O–Cl) fragments at a topological distance of 4.
The negative regression coefficient of this descriptor indi-
cates that the frequency of the O–Cl fragment at the topologi-
cal distance 4 is inversely proportional to the adsorption
properties of organic pollutants. A higher number for this
fragment correlates to lower adsorption properties of organic
pollutants, as observed in compounds 7 (dicamba), 61
(3-chlorophenol) and 66 (2,4,5-trichlorophenoxyacetic acid)
(these compounds contain 3, 1 and 1 such fragments, respec-
tively, at a topological distance of 4), while a lower numerical
value of this descriptor correlates to a higher adsorption
property of organic pollutants as observed in compounds 22
(pyrene), 26 (phenanthrene), 34 (azobenzene) and 69 (2,4-
dinitrotoluene) (these compounds contain no such fragments
at topological distance 4). Thus, the presence of this frag-
ment at the topological distance 4 may hinder the adsorption
of the organic pollutants by MWCNTs. The adsorption of or-
ganic contaminants to the CNTs decreases when the fre-
quency of the (O–Cl) fragment at topological distance 4 in-
creases. Compound 2 (2,4,6-trichlorophenol) also contains a
O–Cl fragment but not at topological distance 4. Therefore,
the adsorption affinity related to the specific surface area of
the MWCNTs value of compound 2 is (logKSA value = −0.81)
not low as compared to compounds 7 (dicamba), 61
(3-chlorophenol) and 66 (2,4,5-trichlorophenoxyacetic acid)
(these compounds contain 3, 1 and 1 such fragments, respec-
tively, at topological distance 4 and the logKSA values are
−2.64, −1.75 and −2.51, respectively).

T(O⋯Cl), a 2D atom pair descriptor, indicates the sum of
the topological distance between oxygen and chlorine. The
negative regression coefficient of this descriptor suggests that
a higher numerical value of this descriptor is detrimental to
enhancing the adsorption properties of organic pollutants re-
lated to the specific surface area of MWCNTs as shown in
compounds 2 (2,4,6-trichlorophenol), 7 (dicamba) and 66
(2,4,6-trichlorophenoxyacetic acid). On the other hand, the or-
ganic pollutants containing no such fragments have higher
adsorption properties as shown in compounds 22 (pyrene),
26 (phenanthrene) and 34 (azobenzene). From this observa-

tion, it can be inferred that the organic pollutants without
(O⋯Cl) fragments may be better adsorbed onto the MWCNTs
surface.

A 2D atom pair descriptor, B05ĲCl–Cl), describes the pres-
ence or absence of Cl–Cl fragments at topological distance 5.
The negative regression coefficient of this descriptor indi-
cates that the presence of the Cl–Cl fragment at the topologi-
cal distance 5 may reduce the adsorption property of organic
pollutants related to the specific surface area of MWCNTs
(logKSA). A higher number of this fragment correlates to
lower adsorption property of organic pollutants as observed
in compounds 7 (dicamba), 41 (1,2,4-trichlorobenzene) and
66 (2,4,5-trichlorophenoxyacetic acid) (containing one such
fragment each) while absence of this fragment in organic pol-
lutants correlates to higher adsorption property as evidenced
from compounds 22 (pyrene), 26 (phenanthrene) and 34
(azobenzene). From this descriptor, it can be suggested that
the presence of this fragment at topological distance 5 may
retard adsorption of the organic pollutants by MWCNTs.

Another 2D atom pair descriptor, T(N⋯N), indicates the
sum of the topological distances between two nitrogen
atoms. A positive contribution towards the adsorption prop-
erties of organic pollutants related to the specific surface area
of MWCNTs (logKSA) indicates that for better adsorption of
organic pollutants by MWCNTs, the topological distance be-
tween two nitrogen atoms should be greater, as shown in
compounds 4 (oxytetracycline), 35 (tetracycline) and 69 (2,4-
dinitrotoluene) (as their corresponding topological distances
between two nitrogen atoms are 5, 5 and 4, respectively), and
vice versa in the case of compounds 42 (isophorone), 43
(4-fluorophenol) and 44 (acetophenone). Thus, it can be in-
ferred that the topological distances between two nitrogen
atoms should be greater for the better adsorption of organic
pollutants by MWCNTs.

As discussed earlier in the introduction section, π–π inter-
actions are one of the key mechanisms for the adsorption of
organic pollutants to CNTs. The information obtained from
these descriptors, nOHp, F04[O–Cl], B05[Cl–Cl], T(N⋯N) and
T(O⋯Cl), strongly support this statement. The descriptor
nOHp weakens the π–π interaction that occurs between the
organic pollutants and CNTs. In this case, the hydroxyl group
is alcoholic in nature (aliphatic hydroxyl group) and cannot
donate the lone pair of electrons to the aromatic ring (not di-
rectly bonded to the aromatic carbon) and ultimately weaken
the π–π interactions of the aromatic ring, though it can form
hydrogen bonds with the surface modified CNTs. On the
other hand, the phenolic hydroxyl group can donate the lone
pair of electrons to the aromatic ring (bonded directly to the
aromatic carbon atom) as discussed previously (section 3.1),
thus strengthening the π–π interactions between organic pol-
lutants and CNTs. In the case of the phenolic hydroxyl group,
it can also act as a π donor, but this is not possible in case of
the alcoholic hydroxyl group. From this observation, it can be
suggested that the aliphatic hydroxyl (alcoholic) group is not
favorable for the adsorption affinity of organic pollutants to
the CNTs. In case of the descriptors B05[Cl–Cl], T(O⋯Cl) and
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F04[O–Cl], the chlorine atom has an electron inductive effect
and decreases the electron density in the benzene ring, which
compensates for the electron-donating effect of the oxygen
atom (in the case of compounds 7 and 66), even after –OH dis-
sociated into –O−. The withdrawing inductive character of
chlorine substituents decreases the electron density of the
p-chlorophenol ring as compared with that of the phenol ring.
Thus, when the O–Cl or Cl–Cl fragment is present in an aro-
matic molecule, it decreases the electron density of that aro-
matic ring (as compared with that of the –OH substituted ben-
zene ring (phenolic) or the benzene ring itself) and ultimately,
electron donor–acceptor interactions do not occur easily be-
tween CNTs and organic contaminants. Hence, the compound
could not be easily adsorbed to the MWCNTs. In case of the
descriptor T(N⋯N), the lone pair of electrons of the nitrogen
atom can be donated to the ring system (when directly at-
tached) and enhance the π–π interaction with the CNTs. The
nitrogen can be present as the amino form (electron donat-
ing) or in the nitro form (electron withdrawing). Both forms
strengthen the π–π interactions between the organic pollut-
ants and CNTs by increasing or decreasing the π-electron den-
sity of the aromatic ring system and act as π electron donor or
acceptor, respectively. If the nitrogen is not directly attached
to the aromatic ring system, then adsorption happens
through electrostatic interactions between the nitrogen of the
pollutants and the hydrogen of CNTs by forming dipoles
when they are close to each other; the position of the nitrogen
atom hardly matters here. The descriptors influencing the π–π

interaction are graphically represented in Fig. 9.

3.2.3. The descriptors related to hydrogen bonding inter-
actions. The descriptor, O%, indicates the percentage of oxy-
gen atoms present in a particular molecule. The positive re-
gression coefficient of this descriptor suggests that the
presence of oxygen atom is highly influential in the adsorp-
tion of the organic pollutants on the surface of MWCNTs. For
example, compounds 4 (oxytetracycline), 35 (tetracycline) and
69 (2,4-dinitrotoluene) show better adsorption affinity as their
corresponding percentages of oxygen atoms are 15.8, 14.3 and
21.1, respectively. In contrast, compounds 3 (benzene), 18 (an-
iline) and 24 (4-chloroaniline) show poor adsorption affinity
as these compounds do not contain any oxygen atoms. The
oxygen atom may be present in different organic pollutants in
keto, phenolic (favorable for adsorption) or alcoholic forms
(not favorable for adsorption as discussed previously). These
different types of oxygen may interact with CNTs in different
ways, e.g., hydrogen bonding, strengthening the π–π interac-
tions and electrostatic interactions. On the other hand, a high
percentage of oxygen atoms may enhance the polarity of the
pollutants. Since the sidewalls of the CNTs are also electrically
polarized, the polar group of organic pollutants can easily ad-
here to the surface of the CNTs. The descriptor involved for
hydrogen bonding interactions is given in Fig. 10.

3.2.4. The descriptors related to the electrostatic interac-
tions. The descriptor, Eta_Epsilon_3, indicates the summa-
tion of epsilon values relative to the total number of atoms
including hydrogen in the connected molecular graph of the
reference alkane, which can be calculated by the following
equation.

Fig. 9 Mechanistic interpretation of the descriptors related to π–π interactions between organic pollutants and MWCNTs (dataset 2).

Environmental Science: NanoPaper

Pu
bl

is
he

d 
on

 1
6 

11
 2

01
8.

 D
ow

nl
oa

de
d 

on
 2

02
5-

10
-1

7 
 1

1:
18

:0
9.

 
View Article Online

https://doi.org/10.1039/c8en01059e


Environ. Sci.: Nano, 2019, 6, 224–247 | 241This journal is © The Royal Society of Chemistry 2019

ε3 = εR/NR

ε denotes electronegativity, NR denotes the number of
atoms present in the reference alkane. This descriptor has a
positive contribution towards the adsorption properties of
organic pollutants related to the specific surface area of
MWCNTs. This indicates that the electron-rich organic pol-
lutants will be highly adsorbed by MWCNTs. Thus, the
higher numerical value (due to strong electrostatic interac-
tions between organic pollutants and CNTs) of this descrip-
tor is required to increase the adsorption properties of or-
ganic pollutants by MWCNTs as shown in compounds 22

(pyrene), 26 (phenanthrene) and 35 (tetracycline) and vice
versa in the case of compounds 7 (dicamba), 13
(3-methylbenzyl alcohol) and 18 (aniline) (due to weak
electrostatic interactions between these organic pollutants
and CNTs).

The information obtained from the descriptor O% sug-
gests that the organic pollutants can adhere to the surface of
MWCNTs by electrostatic interactions. There may be a
chance to form electrostatic interactions between organic pol-
lutants (negatively charged atoms like the oxygen atom of the
hydroxyl group) and MWCNTs (sidewalls of the CNTs are
electrically polarizable, thus polar molecules can easily ad-
here to their surface). The descriptors involved in electro-
static interactions are shown graphically in Fig. 11.

3.3. Dataset 3 : 29 organic solvents

The significant descriptors obtained from the PLS model
using the dispersibility index (logCmax) values of 29 organic
solvents to SWCNTs are minsssN, SpMin3_Bhe, VPC-6 and
SpMin6_Bhi (arranged according to the variable importance
plot, Fig. S2 in ESI†). The modeled descriptors, which are the
key properties altering the dispersibility indexes of organic
solvents, are discussed below. We have also checked the ap-
plicability domain of test set compounds using the DModX
approach (99% confidence level) to find out whether any test
set compounds lie outside of the AD (D-critical = 4.559). The
results suggested that the entire test set compounds lie
within the AD, except for compound number 29 (Fig. S3 in
ESI†). The scatter plot of the observed vs. predicted
dispersibility index of SWCNTs in different solvents are
presented in Fig. 12.

Fig. 10 Mechanistic interpretation of the descriptors related to
hydrogen bonding interactions between organic pollutants and
MWCNTs (dataset 2).

Fig. 11 Mechanistic interpretation of the descriptors related to the electrostatic interactions between organic pollutants and MWCNTs (dataset 2).
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Model P1. logCmax = −1.379 + 1.379 × VPC-6 − 0.949
× SpMin3_Bhe + 0.659 × minsssN
− 0.375 × SpMin6_Bhi

n R R S Ftraining adj

PRESS

    



22 0 830 0 810 0 372 29 34

5

2 2, . , . , . , . ,

.1164 0 775 0 689

0 115

2 2

2

, . , . ,

. ,

Q r

r

 

  

 

 

m LOO

m LOO MAE Good,

n Q Q r rtest F1 F2 m test m test        7 0 945 0 938 0 909 02 2 2 2, . , . , . , .. ,

. ,

048

0 991CCC MAE Good 

The most significant descriptor, minsssN, indicates the mini-
mum atom type E-state >N-. The E-state variable encodes the
intrinsic electronic state of each atom present in the molecu-
lar graph. The intrinsic electronic state of the atom is
changed by the electronic influence of all other atoms in the
molecule within the context of the topological character of
the molecule. Atoms that posses π and lone pairs of electrons
or are terminal atoms possess higher positive values for the
E-state index. Atoms that do not have π and lone pairs of
electrons and are present at the interior part of a molecule
possess lower E-state values. An increase in the minsssN
value would indicate the higher electronegativity of the or-
ganic solvents, which is beneficial for the dispersibility of
SWNTs. The positive regression coefficient of this descriptor
indicates that nitrogen atoms connected to other heavy
atoms play an important role in influencing the dispersibility
of SWNTs in different organic solvents. The numerical values
of this descriptor are directly proportional to the
dispersibility of SWCNTs, suggesting that the dispersibility
index of the SWNTs will increase with increasing the number
of such fragments as evidenced by the compounds 1 (1,3-
dimethyltetrahydro-2Ĳ1H)-pyrimidinone), 2 (1-butylpyrrolidin-2-

one) and 5 (3-(2-oxo-1-pyrrolidinyl)propanenitrile). On the
other hand, the absence of such fragments in different or-
ganic solvents decreases the dispersibility index of SWCNTs
as shown in compounds 24 (cyclohexanone), 27 (formamide)
and 28 (benzyl alcohol). Thus, from this descriptor, it can be
suggested that the dispersibility of CNTs may be enhanced
through electrostatic interactions.

The second highest significant descriptor, SpMin3_Bhe, is
defined as the smallest absolute eigenvalue of Burden modi-
fied matrix-n3/weighted by the relative Sanderson electroneg-
ativities.78 The negative contribution shown by SpMin3_Bhe
indicates that the dispersibility index of SWCNTs in various
solvents can be increased by decreasing the numerical value
of SpMin3_Bhe as shown in compounds 9 (dimethyl-
imidazolidinone), 10 (dimethyl acetamide) and 16 (acrylic
acid). On the other hand, the dispersibility of SWCNTs can
be decreased by increasing the numerical value of
SpMin3_Bhe as shown in compounds 22 (benzyl benzoate)
and 26 (triethyleneglycol). The SpMin3_Bhe descriptor
weighted by the relative Sanderson electronegativity suggests
that the electronegativity of the solvents and polar interac-
tions with CNTs play an important role in the dispersibility
of the SWCNTs. It can be concluded that polar interactions
can have an optimum value. Thus, polar solvents with low
donor number are preferred for the dispersibility of the CNTs
or it would be better to state that solvents with medium po-
larity are satisfactory.

The third highest significant descriptor, VPC-6, is a type of
topological descriptor, which indicates the chi valance path
cluster of order 6. This descriptor differentiates the mole-
cules according to their size, degree of branching, flexibility
and overall shape. Chi cluster descriptor (VPC-6) is an indica-
tor of the nth degree of branching and thus implicates the ef-
fect of substitution in a molecule. The organic solvent mole-
cules that are relatively compact have higher values of this
descriptor,79 suggesting that a small sized molecule with
compactness is most probably a better solvent for SWCNTs.
It has a positive contribution toward the dispersibility index
of SWCNTs in different organic solvents. This indicates that
the degree of branching of organic solvents increases the
dispersibility index of SWCNTs as shown in compounds 1
(1,3-dimethyltetrahydro-2Ĳ1H)-pyrimidinone), 3
(1-benzylpyrrolidin-2-one), and 9 (dimethyl-imidazolidinone),
and vice versa in case of compounds 10 (dimethyl acetamide),
16 (acrylic acid) and 17 (2,2′-thiodiethanol).

The least significant descriptor, SpMin6_Bhi indicates the
smallest absolute eigenvalue of Burden modified matrix – n6/
weighted by the relative first ionization potential.

A modified Burden matrix Q is defined as follows:

[Q]ij = Zi + 0.1δi + 0.01 × nπi and [Q]ij = 0.4/dij

where, Zi depicts the atomic number of the ith atom, di de-
picts the number of non-hydrogen neighbors of the ith atom
(i.e., the vertex degree), nπi depicts the number of π electrons,
and dij depicts the topological distance between the ith and

Fig. 12 The scatter plot of the observed and the predicted dispersibility
index of SWCNTs (logCmax) of the developed PLS model (model P1).
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jth atoms.78 A larger ionization potential of a molecule sug-
gests that higher energy is required to convert the molecule
into cationic form, whereas a smaller ionization potential can
easily convert the molecule into cationic form, which helps
in the easy interaction of the cationic form of the molecule to
the π-system of the carbon nanotube through π-cationic inter-
actions. This descriptor is inversely proportional to the
dispersibility of SWNTs, suggesting that with increasing the
ionization potential, the dispersibility index of the SWNTs de-
creases as evidenced by compounds 27 (formamide), 16
(acrylic acid), and 9 (dimethyl-imidazolidinone). On the other
hand, the dispersibility index of organic solvents increases in
the case of compounds 2 (1-butylpyrrolidin-2-one) and 5 [3-(2-
oxo-1-pyrrolidinyl)propanenitrile]. The effects of the contrib-
uted descriptors on the dispersibility of SWCNTs in diverse
organic solvents are summarized graphically in Fig. 13.

4. Overview and conclusions

MLR and PLS regression-based strategies were employed to
develop QSPR models of organic pollutants (datasets 1 & 2)
and organic solvents (dataset 3). Multiple endpoints related
to CNTs (adsorption coefficient, adsorption coefficient re-
lated to specific surface area of MWCNTs and dispersibility
index) were used to explore the key structural features that
influence the adsorption and dispersibility of the investigated
molecules towards MWCNTs and SWCNTs, respectively. The
models were developed using 2D descriptors only. Prior to
the development of the final models, different strategies for
variable selection were performed to extract the most signifi-
cant descriptors for the generation of the final MLR (5

models for both datasets 1 and 2) and PLS (a single model
for dataset 3) models. Extensive validation of the developed
models was performed, which showed good predictibility and
robustness. The QSPR models were developed in compliance
with the OCED principles. We also used the “Intelligent con-
sensus predictor” tool to explore whether the quality of the
predictions of test set compounds could be enhanced
through an “intelligent” selection of multiple MLR models
(in the case of datasets 1 and 2). The results showed that
based on the MAE-based criteria, the consensus predictions
of multiple MLR models are better than the results obtained
from the individual models. In both cases, the winning
model was CM3. The insights obtained from the developed
MLR models for datasets 1 and 2 are as follows: (i) the de-
scriptors like Ui, F03[O–O], F04[N–O], ETA_BetaP, nOHp,
O%, T(N⋯N), T(O⋯Cl) and F04[O–Cl] influence the adsorp-
tion of organic pollutants either by π–π interactions or by
strengthening π–π interactions. (ii) nArOH, F03[O–O], B03[O–

O], nHBint, F04[N–O], Eta_Epsilon_3 and O% descriptors fa-
vor the adsorption of organic pollutants through electrostatic
interactions. (iii) The organic pollutants adsorbed through
hydrogen bonding interactions are indicated by nArOH,
F03[O–O], B03[O–O], nHBint, F04[N–O] and O%. (iv) The de-
scriptors minsCH3, B06[C–Cl], X0v, VAdjMat, MLOGP2, X2A
and X1A are essential for the adsorption of organic pollutants
through hydrophobic interactions. These observations were
further supported by the following discussion: the organic
adsorbates of CNTs were mostly aromatic compounds,
confirming that aromatic compounds have a better interac-
tion with CNTs than the non-aromatic pollutants, due to
their π electron richness and flat conformation. The

Fig. 13 The effects of the contributed descriptors on the dispersibility of SWCNTs in diverse organic solvents.
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systematic understanding of aromatic contaminants is there-
fore critical since aromaticity plays an important role in ad-
sorption. Several studies have suggested that π–π interactions
are crucial for the adsorption of organic compounds to
CNTs,71,80,81 which in turn depends on the size and shape of
the molecules, due to the curvature of the CNTs and its sub-
stituents. The π-system of the organic pollutants interacts
with the π-system of the CNTs through π–π interactions and
the interactions increase with the number of aromatic rings
in the adsorbates.39,82 Both electron withdrawing groups (e.g.
–NO2 and –Cl) and electron donating groups (e.g. –NH2, –OH)
strengthen the π–π interactions between the pollutants and
MWCNTs73,74 by acting as π-electron acceptors and π-electron
donors, respectively. The hydroxyl group was investigated as
an electron donating substituent on adsorptive interactions
among pollutants and MWCNTs, since the hydroxyls, by dis-
sociating to –O− (which has stronger electron donating abil-
ity), strengthen the n–π electron donor–acceptor (EDA) mech-
anism. Compounds with no aromatic ring (no π electrons)
interact through hydrophobic forces. A study also suggested
that CNTs act as strong adsorbents for hydrophobic com-
pounds due to hydrophobic interactions.15,16,33,83–85 Hydroxyl
groups (phenolic form) can interact through various means,
such as (i) hydrophobic interactions (ii) electrostatic interac-
tions (both attraction and repulsion) (iii) hydrogen bonding
interactions and (iv) enhancing π–π interactions. As the num-
ber of hydroxyl groups (phenolics) in the pollutants in-
creases, the hydrophobicity decreases. Thus, it can be consid-
ered as a major factor in the adsorption of phenolics to
CNTs. Hydrogen bonding can also be a major interaction be-
tween hydroxyl-containing pollutants and substituted carbon
nanotubes.86,87 Hydroxyl and amino group interactions can
be related to the electronic features. In one experiment, it
was observed that 1-naphthylamine has better adsorption to
treated CNTs than the untreated CNTs, and there was an ad-
ditional observation that although both 2,4-dichlorophenol
and 2-naphthol contain an –OH group, the adsorption of
2-naphthol was more significant with variation in the func-
tionality of CNTs.88 This indicates that when the adsorbates
possess electronic properties, the functionality of nanotubes
helps with the improvement of adsorption.88 Chen et al.89

reported that nitro group containing pollutants show stron-
ger adsorption than non-polar aromatics. This indicates that
along with hydrophobic interactions, there is some other es-
sential interaction that controls the adsorption, which is
comparable to the π-electron polarizability that is related to
aromatic compounds and electron donating as well as
accepting properties, similar to compounds having more
than two nitro groups. Nitroaromatic compounds, besides be-
ing polar in nature, have electron accepting capacity when
interacting with adsorbents having high electron polarizabil-
ity properties and also have high electron conjugation with
the π-electrons of CNTs. Thus, the higher affinity of nitro aro-
matic compounds as compared to other pollutants is due to
π–π electron donor–acceptor interactions; since nitrogen is a
strong electron-withdrawing atom, it acts as a π-acceptor and

carbon nanotubes act as the π-donor.90–93 Hydrogen bonding
is also possible between nitro groups of the pollutants, which
act as H-acceptors and functional group-substituted carbon
nanotubes. The presence of two chlorine atoms causes the
electron inductive effect, which may cause a reduction in the
electron density of the aromatic ring attached to it, as
suggested by Sulaymon and Ahmed et al.;94 the electron do-
nating effect of the hydroxyl atom attached to the aromatic
ring compensates for this by dissociating into the stronger
electron donor like –O− (oxygen). We can, therefore, conclude
that the adsorption of the organic pollutants to the CNTs can
be enhanced by the following: a greater number of aromatic
rings, high unsaturation or electron richness of the molecule,
the presence of polar groups substituted on the aromatic
ring, the presence of two oxygen atoms at a topological dis-
tance of 3, the presence of nitrogen and oxygen atoms at the
topological distance of 4, the size of the molecules, and the
hydrophobic surface of the molecules. On the other hand,
the presence of carbon and oxygen atoms at a topological dis-
tance of 1, aliphatic primary alcohols, the presence of two
chlorine atoms at topological distance 5 and the presence of
oxygen and chlorine atoms at topological distance 4 may be
detrimental and can retard the adsorption of organic pollut-
ants. From the insights obtained from the PLS model for
dataset 3, we have interpreted that the organic solvents bear-
ing the >N- fragment, polar solvents with low donor number,
compact molecules and lower ionization potential may be
better solvents to enhance the dispersibility of SWCNTs.
Dispersibility is directly correlated to the adsorption proper-
ties of molecules to CNTs. This PLS model and contributed
descriptors can help with the understanding of the mecha-
nism of the dispersion process and predict organic solvents
that improve the dispersibility of SWCNTs and may overcome
the drawbacks of SWCNTs. This work may, therefore, be
helpful in the removal of the harmful and toxic contami-
nants/disposal of the by-products from the various industries,
making it possible to achieve a pollution-free environment.
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