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There is an intuitive analogy of an organic chemist's understanding of a compound and a language speaker’s
understanding of a word. Based on this analogy, it is possible to introduce the basic concepts and analyze
potential impacts of linguistic analysis to the world of organic chemistry. In this work, we cast the reaction
prediction task as a translation problem by introducing a template-free sequence-to-sequence model,
trained end-to-end and fully data-driven. We propose a tokenization, which is arbitrarily extensible with
reaction information. Using an attention-based model borrowed from human language translation, we
improve the state-of-the-art solutions in reaction prediction on the top-1 accuracy by achieving 80.3%
without relying on auxiliary knowledge, such as reaction templates or explicit atomic features. Also,
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1 Introduction

After nearly 200 years of documented research, the synthesis of
organic molecules remains one of the most important tasks in
organic chemistry. The construction of a target molecule from
a set of existing reactants and reagents via chemical reactions is
attracting much attention because of its economical
implications.

Multiple efforts have been made in the past 50 years to
rationalize the large number of chemical compounds and
reactions identified, which form the large knowledge bases for
solving synthetic problems. In 1969, Corey and Wipke*
demonstrated that both synthesis and retrosynthesis could be
performed by a machine. Their pioneering contribution
involved the use of handcrafted rules made by experts, which
are commonly known as reaction templates. The templates
encode the local changes to the atoms' connectivity under
certain conditions accounting for various subtleties of retro-
synthesis. A similar algorithm emerged in the late 1970s* which
also requires a set of expert rules. Unfortunately, rules writing is
a tedious task, both time and labor-intensive, and may not cover
the entire domain for complex organic chemistry problems. In
such cases, profound chemical expertise is still required, and
the solutions are usually developed by trained organic chemists.
However, it can be extremely challenging even for them to
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synthesize a relatively complex molecule, which may take
several reaction steps to construct. In fact, navigating the
chemical space of drug-related compounds by relying only on
intuition may turn a synthesis into a nearly impossible task,
especially if the problem is slightly outside the expert's
knowledge.

Other approaches extract reaction templates directly from
data.*® In this specific context, candidate products are gener-
ated from the templates and then are ranked according to their
likelihood. Satoh and Funatsu®* used various hard-coded
criterion to perform the ranking whereas more recent
approaches®® used a deep neural network. However, these types
of approaches are fundamentally dependent on the rule-based
system component and thus inherit some of its major limita-
tions. In particular, these approaches do not produce suffi-
ciently accurate predictions outside of the training domain.

Nevertheless, the class of algorithms'® that is based on rules
manually encoded by human experts or automatically derived
from a reaction database is not the only way to approach the
problem of organic synthesis. A second approach for predicting
chemical reactions exploits the advancements in computational
chemistry to evaluate the energy barriers of a reaction, based on
first-principle calculations.” Although it is possible to reach
very accurate levels of predictions for small systems (chemical
reactions involving few hundred atoms), it is still a very
computationally daunting task which limits, among other
things, the sampling of the solvent degrees of freedom, possibly
resulting in unrealistic entropy contributions. Therefore, while
computational chemistry may intrinsically solve the problem of
reaction prediction, its prohibitive cost does prevent the
systematic treatment of all those degrees of freedom that may
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drive the chemical reaction along a specific route. For such
reasons, its current field of applicability in industry is mainly
limited to problems that may have a purely academic interest.

One way to view the reaction prediction task is to cast it as
a translation problem, where the objective is to map a text
sequence that represents the reactants to a text sequence rep-
resenting the product. Molecules can equivalently be expressed
as text sequences in line notation format, such as the simplified
molecular-input line-entry system (SMILES).' Intuitively, there
is an analogy between a chemist's understanding of a compound
and a language speaker's understanding of a word. No matter
how imaginative such an analogy is, it was only very recently that
a formal verification was proved." Cadeddu et al.** showed that
organic molecules contain fragments whose rank distribution is
essentially identical to that of sentence fragments. Moreover, it
has already been shown that a text representation of molecules
has been effective in chemoinformatics.””*® This has strength-
ened our belief that the methods of computational linguistics
can have an immense impact on the analysis of organic mole-
cules and reactions.

In this work, we build on the idea of relating organic
chemistry to a language and explore the application of state-of-
the-art neural machine translation methods, which are
sequence-to-sequence (seq2seq) models. We intend to solve the
forward-reaction prediction problem, where the starting mate-
rials are known and the interest is in generating the products.
This approach was first pioneered by Nam and Kim."” Here, we
propose a model with higher capacity and a different attention
mechanism, which better captures the relation between reac-
tants and products. For the tokenization, we combine an atom-
wise tokenization for the reactants similar to the work of Nam
and Kim" with a one-hot reagent tokenization suggested by
Schneider et al.*® Given that training data for reaction condition
were available, the tokenization would be arbitrarily extensible
with tokens describing those conditions. In this work, we only
use a set of the most common reagents.' The overall network
architecture is simple, and the model is trained end-to-end,
fully data-driven and without additional external information.
With this approach, we improved the top-1 accuracy by 0.7%
compared to current template-free solutions, achieving a value
of 80.3% using their own training and test data sets.”® The
model presented set also a first score of 65.4% on a noisy single
product reactions dataset extracted from US patents.

2 Related work

2.1 Template-based reaction prediction

Template-based reaction prediction methods have been widely
researched in the past couple of years.>*** Wei et al.** used
a graph-convolution neural network proposed by Duvenaud
et al.”* to infer fingerprints of the reactants and reagents. They
trained a network on the fingerprints to predict which reaction
templates to apply to the reactants. Segler and Waller® built
a knowledge graph using reaction templates and discovered
novel reactions by searching for missing nodes in the graph.
Coley et al.® generated for a given set of reactants all possible
product candidates from a set of reaction templates extracted
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from US patents® and predicted the outcome of the reaction by
ranking the candidates with a neural network. One major
advancement by Segler and Waller® and Coley et al.® was to
consider alternative products as negative examples. Recently,
Segler and Waller* introduced a neural-symbolic approach.
They extracted reaction rules from the commercially available
Reaxys database. Then, they trained a neural network on
molecular fingerprints to prioritize templates. The reaction
products were generated using the top-ranked templates. In any
case, template-based methods have the limitation that they
cannot predict anything outside the space covered by the
previously extracted templates.

2.2 Template-free reaction prediction

While template-free approaches existed for decades,*?® a first
rule-free approach was introduced by Kayala et al** Using
fingerprints and hand-crafted features, they predicted a series
of mechanistic steps to obtain one reaction outcome. Owing to
the sparsity of data on such mechanistic reaction steps, the
dataset was self-generated with a template-based expert system.
Recently, Jin et al.*® used a novel approach based on Weisfeiler-
Lehman Networks (WLN). They trained two independent
networks on a set of 400 000 reactions extracted from US
patents. The first WLN scored the reactivity between atom pairs
and predicted the reaction center. All possible bond configu-
ration changes were enumerated to generate product candi-
dates. The candidates that were not removed by hard-coded
valence and connectivity rules are then ranked by a Weisfeiler-
Lehman Difference Network (WLDN). Their method achieved
a top-1 accuracy of 79.6% on a test set of 40 000 reactions. Jin
et al.* claimed to outperform template-based approaches by
a margin of 10% after augmenting the model with the unknown
products of the initial prediction to have a product coverage of
100% on the test set. The dataset with the exact training, vali-
dation and test split have been released.§ The complexity of the
reaction prediction problem was significantly reduced by
removing the stereochemical information.

2.3 Seq2seq models in organic reaction prediction and
retrosynthesis

The closest work to ours is that of Nam and Kim,' who also
used a template-free seq2seq model to predict reaction
outcomes. Whereas their network was trained end-to-end on
patent data and self-generated reaction examples, they limited
their predictions to textbook reactions. Their model was based
on the Tensorflow translate model (v0.10.0),* from which they
took the default values for most of the hyperparameters.
Compared to Nam and Kim,"” our model uses Luong's attention
mechanism,* through which a mapping between input and
output tokens is obtained.

Retrosynthesis is the opposite of reaction prediction. Given
a product molecule, the goal is to find possible reactants. In
contrast to major product prediction, in retrosynthesis more
than one target string might be correct, e.g. a product could be
the result of two different reactant pairs. Having no distinct
target, the training of a seq2seq model can be more difficult.

This journal is © The Royal Society of Chemistry 2018
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The first attempt of using a seq2seq model in retrosynthesis was
achieved by Liu et al** They used a set of 50 000 reactions
extracted and curated by Schneider et al.*® The reactions from
that set include stereochemical information and are classified
into ten different reactions classes. Overall, none of the previous
works was able to demonstrate the full potential of seq2seq
models.

3 Dataset

All the openly available chemical reaction datasets were derived
in some form from the patent text-mining work of Daniel M.
Lowe.> Lowe's dataset has recently been updated and contains
data extracted from US patents grants and applications dating
from 1976 to September 2016.** What makes the dataset
particularly interesting is that the quality and noise may be
similar to the data a chemical company might own. The portion
of granted patents is made of 1 808 938 reactions, which are
described using SMILES."

Looking at the original patent data, it is surprising that
a complex chemical synthesis process consisting of multiple
steps, performed over hours or days, can be summarized in
a simple string. Such reaction strings are composed of three
groups of molecules: the reactants, the reagents, and the
products, which are separated by a ‘>’ sign. The process actions
and reaction conditions, for example, have been neglected
so far.

To date, there is no standard way of filtering duplicates,
incomplete or erroneous reactions in Lowe's dataset. We kept
the filtering to a minimum to show that our network is able to
handle noisy data. We removed 720768 duplicates by
comparing reaction strings without atom mapping and an
additional 780 reactions, because the SMILES string could not
be canonicalized with RDKit,** as the explicit number of valence
electrons for one of the atoms was greater than permitted. We
took only single product reactions, corresponding to 92% of the
dataset, to have distinct prediction targets. Although this is
a current limitation in the training procedure of our model, it
could be easily overcome in the future, for example by defining
a specific order for the product molecules. Finally, the dataset
was randomly split into training, validation and test sets
(18 : 1:1).9 Reactions with the same reactants, but different
reagents and products were kept in the same set.

To compare our model and results with the current state of
the art, we used the USPTO set recently published by Jin et al.*®
It was extracted from Lowe's grants dataset®® and contains
479 035 atom-mapped reactions without stereochemical infor-
mation. We restricted ourselves to single product reactions,
corresponding to 97% of the reactions in Jin's USPTO set. An
overview of the datasets taken as ground truths for this work is
shown in Table 1.

In general, we observe that if reactions that do not work well
with the model are removed under the assumption that they are
erroneous, the model's accuracy will improve suggesting the
presence of a specific tradeoff between coverage and accuracy.
This calls for open datasets. The only fair way to compare
models is to use datasets to which identical filtering was applied

This journal is © The Royal Society of Chemistry 2018
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Table 1 Overview of the datasets used in this work. Jin's is derived
from Lowe's grants dataset

Reactions in Train Valid Test Total
Lowe's grants set** no 1808 938
duplicates single product 1088170
902 581 50131 50 258 1002 970
Jin's USPTO set®® 409035 30000 40000 479 035
single product 395 496 29 075 38 647 463 218

or where the reactions that the model is unable to predict are
counted as false predictions.

3.1 Data preprocessing

To prepare the reactions, we first used the atom mappings to
separate reagents from reactants. Input molecules with atoms
appearing in the product were classified as reactants and the
others without atoms in the product as reagents. Then, we
removed the hydrogen atoms and the atom mappings from the
reaction string, and canonicalized the molecules. Afterwards,
we tokenized reactants and products atom-wise using the
following regular expression:

token_regex = "(\[["\]]+]|Br?|C1?|N|OJ|S|P|F|I|blcn|o|s|p\(|)\.
[=#] =Nz ~ | @2 > N \S\6[0-91 {2 }[0-9])".

As reagent atoms are never mapped into product atoms, we
employed a reagent-wise tokenization using a set of the 76 most
common reagents, according to the analysis in ref. 19. Reagents
belonging to this set were added as distinct tokens after the first
>’ sign, ordered by occurrence. Other reagents, which were not in
the set, were neglected and removed completely from the reac-
tion string. The separate tokenization would allow us to extend
the reaction information and add tokens for reaction conditions
without changing the model architecture. The final source
sequences were made up of tokenized “reactants > common
reagents” and the target sequence of a tokenized “product”. The
tokens were separated by space characters. The preprocessing
steps together with examples are summarized in Table 2. The
same preprocessing steps were applied to all datasets.

4 Model

To map the sequence of the reactants/reagents to the sequence
of the products, we adapted an existing implementation®® with
minor modifications. Our model architecture, illustrated in
Fig. 1, consists of two distinct recurrent neural networks (RNN)
working together: (1) an encoder that processes the input
sequence and emits its context vector C, and (2) a decoder that
uses this representation to output a probability over a predic-
tion. For these two RNNs, we rely on specific variants of long
short-term memory (LSTM)*® because they are able to handle
long-range relations in sequences. An LSTM consists of units
that process the input data sequentially. Each unit at each time

Chem. Sci., 2018, 9, 6091-6098 | 6093
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Table 2 Data preparation steps to obtain source and target sequences. The tokens are separated by a space and individual molecules by a point

token
Step Example (entry 23 738, Jin's USPTO test set*’): reactants > reagents > products
1) Original string [Cl:1][c:2]1[cH:3][c:4]([CH3:8])[n:5][n:6]1[CH3:7].[OH:14][N+:15]([0—:16])=[0:17].[S:9](=[0:10])(=[0:11])
([OH:12])[OH:13]>> [Cl:1][c:2]1[c:3]([N+:15](=[0:14])[O—:16])[c: ]([CHs 8])[n:5][n:6]1[CH3:7]
(2) Reactants and [Cl:1][c:2]1[cH:3][c:4]([CH3:8])[n:5][n:6]1[CH3:7].[OH:14][N+:15]([0—:16])=[0:17]>[S:9](=[0:10])(=[0:11])
reagent separation ([OH:12])[OH:13]>[Cl:1][c:2]1[c:3]([N+:15](=[0:14])[O—:16])[c: ]([CH3 8])[n:5][n:6]1[CH3:7]
(3) Atom-mapping removal Cclce(Cln(C)n1.0=[N+]([O—])0>0=S(=0)(0)O>Cc1nn(C)c(Cl)c1[N+](=0)[0—]
and canonicalization
(@) Tokenization Cclcc(Cl)n(C)n1.0=[N+]([0O—])O>A;>Cc1nn(C)c(Cl)c1[N+](=0)[0O—]
Source Cclcc(Cl)n(C)n1.0=[N+]([0—])O>A,
Target Cclnn(C)c(Cl)c1[N+](=0)[0—]

m‘\{{al, —a}(fa,..,a}] [({a,..,a})

: c o

Attention

</s>

Decoder
) -
<s>

Illustration of an attention-based seq2seq model.
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Fig. 1
step t processes an element of the input x, and the network's

previous hidden state 4, ;. The output and the hidden state
transition is defined by

i, =o(Wx, + Uh,_y + b)) (1)
Ji=oa(Wx, + U1 + by) (2)

01 = a(Wox, + Ughi—y + bo) (3)

¢ =f ®c_1+i, @ tanh(Wex, + Uh,_ + b.) (4)
h, = 0, ® tanh(c,_1), (5)

where i;, f; and o, are the input, forget, and output gates; c is the
cell state vector; W, U and b are model parameters learned
during training; ¢ is the sigmoid function and ® is the entry-
wise product. For the encoder, we used a bidirectional LSTM
(BLSTM).*” A BLSTM processes the input sequence in both
directions, so they have context not only from the past but also
from the future. They comprise two LSTMs: one that processes
the sequence forward and the other backward, with their
forward and backward hidden states 7% and ;zt for each time
step. The hidden states of a BLSTM are defined as

hy = {Z,;Z,}~ (6)
Thus we can formalize our encoder as
C = fiWex,h, 1), (7)

6094 | Chem. Sci., 2018, 9, 6091-6098

where fis a multilayered BLSTM; #, € R” are the hidden states at
time ¢; x, is an element of an input sequence x = {x,, ..., X7},
which is a one-hot encoding of our vocabulary; and W, are the
learned embedding weights. Generally, C is simply the last of
the encoder's hidden states:

The second part of the model - the decoder - predicts the
probability of observing a product y = {Jy, ..., Ja}:

- 1jp<yz-|{ﬁl, di)) ©)

and for a single token y;:

PONDL, s Dicatied) = 81,5000, (10)
where g is a stack of LSTM, which outputs the probability y, for
a single token; s; are the decoder's hidden states; and c; is
a different context vector for each target token y;, Bahdanau
et al.*® and Luong et al.*' proposed attention mechanisms, i.e.,
different ways for computing the c; vector rather than taking the
last hidden state of the encoder %,. We performed experiments
using both models and describe Luong's method, which yielded

the best overall results.

4.1 Luong's attention mechanism

To compute the context vector, we first have to compute the
attention weights a:

Woh
= PO Wah) (1)
Z exp Tw, h,/
T
=> aih, (12)
=0
The attention vector is then defined by
a; = tanh(W,{c;s:}). (13)

Both W, and W, are learned weights. Then a can be used to
compute the probability for a particular token:

This journal is © The Royal Society of Chemistry 2018
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p(yll {yla L) yifl}aci) = SOftmaX( Wpai)7 (14)

where W, are also the learned projection weights.

4.2 Training details

During training, all parameters of the network were trained
jointly using a stochastic gradient descent. The loss function
was a cross-entropy function, expressed as

H(y,7) ==Y yilog(,) (15)
for a particular training sequence. The loss was computed over
an entire minibatch and then normalized. The weights were
initialized using a random uniform distribution ranging from
—0.1 to 0.1. Every 3 epochs, the learning rate was multiplied by
a decay factor. The minibatch size was 128. Gradient clipping
was applied when the norm of the gradient exceeded 5.0. The
teacher forcing method® was used during training.

5 Architecture & hyperparameter
search

Finding the best-performing set of hyperparameters for a deep
neural network is not trivial. As mentioned in Section 4, our
model has numerous parameters that can influence both its
training and its architecture. Depending on those parameters,
the performance of the model can vary notably. In order to
select the best parameters efficiently, we build a framework
around scikit-optimize.*® After the evaluation of 10 random sets,
a gradient-boosted tree model** was used as surrogate model
together with expected improvement as acquisition function*
to guide the hyperparameter search on a space defined in
Table 3. The sets of hyperparameters were evaluated according
to their accuracy on the validation set. In total, we trained 100
models for 30 epochs. The set of best hyperparameters found
with this method is highlighted in bold. This model has been
further trained to 80 epochs to improve its final accuracy.

6 Experiments
6.1 Reaction prediction

We evaluated our model on two data sets and compared the
performance with other state-of-the-art results. After the

Table 3 Hyperparameters space, parameters for the best model in
bold

Parameter Possible values

Number of units
Number of layers
Type of encoder
Output dropout
State dropout

128, 256, 512 or 1024
2,40r6

LSTM, BLSTM

0-0.9 (0.7676)

0-0.9 (0.5374)

Learning rate 0.1-5 (0.355)
Decay factor 0.85-0.99 (0.854)
e of attention “Luong” or
P g
“Badhanau”

This journal is © The Royal Society of Chemistry 2018
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hyperparameter optimization, we continued to train our best
model on the 395 496 reactions in Jin's USPTO train set and
tested the fully trained model on Jin's USPTO test set. Addi-
tionally, we trained a second model with the same hyper-
parameters on 902 581 randomly chosen single-product
reactions from the more complex and noisy Lowe dataset and
tested it on a set of 50 258 reactions. As molecules are discrete
data, changing a single character, such as in source code or
arithmetic expressions, can lead to completely different mean-
ings or even invalidate the entire string. Therefore we use full-
sequence accuracy, the strictest criteria possible, as our evalu-
ation metric by which a test prediction is considered correct
only if all tokens are identical to the ground truth.

The network had to solve three major challenges. First, it had
to memorize the SMILES grammar to predict synthetically
correct sequences. Second, because we trained it on canon-
icalized molecules, the network had to learn the canonical
representation. Third, the network had to map the reactants
plus reagents space to the product space.

Although the training was performed without a beam search,
we used a beam width of 10 without length penalty for the
inference. Therefore the 10 most probable sequences were kept
at every time step. This allowed us to know what probability the
network assigned to each of the sequences. We used the top-1
probabilities to analyze the prediction confidence of the
network.

The final step was to canonicalize the network output. This
simple and deterministic reordering of the tokens improved the
accuracy by 1.5%. Thus, molecules that were correctly pre-
dicted, but whose tokens were not enumerated in the canonical
order, were still counted as correct. The prediction accuracies of
our model on different datasets are reported in Table 4. For
single product reactions, we achieved an accuracy of 83.2% on
Jin's USPTO test dataset and 65.4% on Lowe's test set.

An additional validation can be found in the ESI,T were we
used the model trained on Lowe's dataset to predict reactions
from pistachio,* a commercial database of chemical reactions
extracted from the patent literature. Because the Lowe's dataset
used to train the model contained reactions until September
2016, we only predicted the reactions from 2017 and hence, we
had a time split.

6.2 Comparison with the state of the art

To the best of our knowledge, no previous work has attempted to
predict reactions on the complete US patent dataset of Lowe.**
Table 5 shows a comparison with the Weisfeiler-Lehman differ-
ence networks (WLDN) from Jin et al.*® on their USPTO test set.

Table 4 Scores of our model on different single product datasets

Accuracies in [%]

Test set Size BLEU,"” ROUGE' Top-1 Top-2 Top-3
Jin's USPTO*® 38648  95.9, 96.0 83.2 87.7 89.2
Lowe's*? 50258  90.3, 90.9 65.4 71.8 74.1

Chem. Sci., 2018, 9, 6091-6098 | 6095
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Table 5 Comparison with Jin et al?® The 1352 multiple product
reactions (3.4% of the test set) are counted as false predictions for our
model

Jin's USPTO test set,?” accuracies in [%]

Method Top-1 Top-2 Top-3 Top-5
WLDN?* 79.6 87.7 89.2
Our model 80.3 84.7 86.2 87.5

To make a fair comparison, we count all the multiple product
reactions in the test set as false predictions for our model
because we trained only on the single product reactions. By
achieving 80.3% top-1 accuracy, we perform quantitatively nearly
identical. As our model does not rank candidates, but was trained
on accurately predicting the top-1 outcome, it is not surprising
that the WLDN beats our model in the top-3 and top-5 accuracy.
The decoding of the 38 648 USPTO test set reactions takes on
average 25 ms per reaction, inferred with a beam search. Our
model can therefore compete with the state of the art.

6.3 Prediction confidence

We analyzed the top-1 beam search probability to obtain infor-
mation about prediction confidence and to observe how this

|
|

<
™

o
o

o
~

Probability of top-1 prediction
o
()

True False
Top-1 prediction is correct

o
o

(a) Distribution of top-1 probabilities
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probability was related to accuracy. Fig. 2a illustrates the distri-
bution of the top-1 probability for Lowe's test set in cases where
the top-1 prediction is correct (left) and where it is wrong (right). A
clear difference can be observed and used to define a threshold
under which we determine that the network does not know what
to predict. Fig. 2b shows the top-1 accuracy and coverage
depending on the confidence threshold. For example, for a confi-
dence threshold of 0.83 the model would predict the outcome of
70.2% of the reactions with an accuracy of 83.0% and for the
remaining 29.8% of the reaction it would not know the outcome.

6.4 Attention

Attention is the key to take into account complex long-range
dependencies between multiple tokens. Specific functional
groups, solvents or catalysts have an impact on the outcome of
a reaction, even if they are far from the reaction center in the
molecular graph and therefore also in the SMILES string. Fig. 3
shows how the network learned to focus first on the C[O]
molecule, to map the [0~ ] in the input correctly to the O in the
target, and to ignore the Br, which is replaced in the target. A
few more reaction predictions together with the attention
weights, confidence and token probabilities are found in the
ESLt
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6.5 Limitations

Our model is not without limitations. An obvious disadvantage
compared to template-based methods is that the strings are not
guaranteed to be a valid SMILES. Incorporating a context-free
grammar layer, as was done in ref. 12, could bring minor
improvements. Fortunately, only 1.3% of the top-1 predictions
are grammatically erroneous for our model.

Another limitation of the training procedure are multiple
product reactions. In contrast to words in a sentence, the exact
order in which the molecules in the target string are
enumerated does not matter. A viable option would be to
include in the training set all possible permutations of the
product molecules.

Our hyperparameter space during optimization was
restricted to a maximum of 1024 units for the encoder. Using
more units could have led to improvements. On Jin's USPTO
dataset, the training plateaued because an accuracy of 99.9%
was reached and the network had memorized almost the entire
training set. Even on Lowe's noisier dataset, a training accuracy
of 94.5% was observed. A hyperparameter optimization could
be performed on Lowe's dataset to improve the prediction
accuracy.

7 Conclusion

Predicting reaction outcomes is a routine task of many organic
chemists trained to recognize structural and reactivity patterns
reported in a wide number of publications. Not only did we
show that a seq2seq model with correctly tuned hyper-
parameters can learn the language of organic chemistry, our
approach also improved the current state-of-the-art in patent
reaction outcome prediction by achieving 80.3% on Jin's USPTO
dataset and 65.4% on single product reactions of Lowe's data-
set. Similar to the work of Nam and Kim,"” our approach is fully
data driven and free of chemical knowledge/rules and
compared to their work,'” we take full advantage of the attention
mechanism. Also worth mentioning is the overall simplicity of
our model that jointly trains the encoder, decoder and attention
layers end-to-end. Our hope is that, with this type of model,
chemists can codify and perhaps one day fully automate the art
of organic synthesis.
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