Direct transformation of bijels into bicontinuous composite electrolytes using a pre-mix containing lithium salt†‡
Abstract
We report a general strategy for making bicontinuous conducting composite materials in a controllable fashion. Our approach begins with a bicontinuous interfacially jammed emulsion gel (bijel) fabricated from a pre-mix containing a salt, here bis(trifluoromethane)sulfonimide lithium salt (LiTFSI). The resulting structure has interpenetrating ionic conducting and non-conducting domains composed of an ethylene carbonate (EC)-rich phase and a p-xylene (xylene)-rich phase of roughly equal volumes. This is the first time that bijel fabrication has been carried out using a pair of partially miscible liquids whose phase behaviour has been modified due to the addition of salt. Diffusing polystyrene (PS) into the xylene-rich phase enables the facile formation of a PS-filled bijel in place of a multi-step polymerization of added monomers. Drying the bijel results in the selective removal of xylene, reducing the total sample volume without compromising the morphology of the EC domain. Electrochemical impedance spectroscopy of the composite electrolytes confirms the existence of ion conducting pathways.
- This article is part of the themed collection: International Year of the Periodic Table: Elements for Next Generation Batteries