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Salient space detection algorithm for signal
extraction from contaminated and distorted
spectrum

Y. W. Jia, a,b S. Y. Sun,a L. Yanga and D. Wangc

An algorithm for signal extraction from a contaminated and distorted spectrum is proposed. First, this algo-

rithm combines the salient space of the spectrum and the statistical characteristics of the noise to detect

signal regions at different scales. Second, it extracts signals by subtracting the baseline from the spectrum

in the signal regions. The baseline is fitted by segmented polynomial functions. This algorithm has been

applied to simulated and experimental data, and the results show that this algorithm can accurately and

automatically extract signals with varying widths from a contaminated spectrum. This method minimizes

the influence of baseline distortion and exhibits good anti-noise capability and high real-time performance.

1 Introduction

A spectrum can be used to extract information from a sample
such as the chemical and physical structure of a material,1,2 or
the concentration of a solution.3,4 Spectrum is widely used in
many fields such as mass spectrometry and chromatography.
However, random noises and irregular baseline distortions,
which can arise from several hardware and processing sources,
inevitably exist in the spectrum.5 These interferences in a spec-
trum result in incorrect detection of signal regions (represent-
ing the structural information of the sample) and inaccurate
calculation of signal intensity6,7 (denoting the concentration
of the sample). Thus, it is important to avoid the influence of
these interferences to correctly and accurately extract signals
from the spectrum.8

Many methods have been used to extract signals such as the
zero-crossing technique9 (searching for zeros in the first deriva-
tive and treating these positions as signal regions), threshold-
ing algorithm6,7 (where only points three times larger than the
standard deviation of the spectrum noise are treated as signal
points) or wavelet decomposition and integration.10–13 All these
methods have significantly contributed to signal extraction.
The zero-crossing technique is the simplest method to extract
signals, but it is invalid when noises exist.9 Thresholding algor-
ithm is one of the mainstream approaches in signal extraction
because of its simplicity and anti-noise capability. However,

two issues must be addressed. First, weak signals, having
peaks three times smaller than the standard deviation of the
spectrum noise, are lost in the spectrum. Second, the accuracy
of this approach is adversely affected by the baseline, and this
approach may fail because baseline distortions can be signifi-
cantly larger than peak intensities.6 Wavelet decomposition is
widely used to eliminate baseline rolling before the threshold-
ing algorithm or even to directly extract signals.14 However, its
accuracy is often influenced by the wavelet base and the
number of decompositions, which are often chosen by experi-
ence, thereby restricting its applicability.15,16

In several literatures, the baseline is corrected before signal
extraction to reduce baseline influence.17 However, baseline
correction of the whole spectrum is difficult, and it increases
the computational problem. Furthermore, many methods
must remove signal regions before baseline correction to
acquire a better baseline.6 Thus, baseline correction and
signal extraction are typically restricted by each other.18

Algorithms that do not use a model of the baseline or
signal shape and that have anti-noise capability are preferred.
Many iterative algorithms19–21 and Difference-of-Gaussian
(DoG) functions can meet this requirement. Adaptive itera-
tively reweighted penalized least squares (airPLS) is a well-
known iterative algorithm, because it is flexible and valid;
however, it needs further optimization. Lowe22,23 proposed
DoG for image processing, and it has also been used for signal
extraction.24 Furthermore, DoG can automatically extract
signals of different widths in the same spectrum, and its accu-
racy is seldom influenced by baseline and noise. However,
applying DoG is time consuming.

Herein, we propose Salient-Space-Detection algorithm (SSD)
for signal extraction. SSD has been developed with reference to
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DoG and noise statistics. SSD has all of the advantages of DoG,
and it gives more real-time and accurate results than other
algorithms.

We have evaluated our method using simulated spectra,
and we have applied it to real measured spectra. The results
show that the algorithm is robust, real-time and accurate for
signal extractions of different kinds of spectra.

2 Methods
2.1 Signal region detection

Signal region detection based on SSD can be represented as
follows:

First, the background space of a spectrum is defined as a
function, B(x, r), obtained by averaging the offset spectrum,
I(x − r) and I(x + r), of the original input spectrum, I(x).

Bðx; rÞ ¼ ½Iðx� rÞ þ Iðxþ rÞ�=2 ð1Þ
Here, r is the offset value of the original spectrum, which

also represents the scale of the background spectrum.
Different values of r produce various background spectra. All
background spectra constitute the background space.

Second, the salient space, H(x, r), can be obtained from the
difference of the original spectrum and background space.

Hðx; rÞ ¼ IðxÞ � Bðx; rÞ; spectrum is positive
Bðx; rÞ � IðxÞ; spectrum is negative

�
ð2Þ

Here, a positive spectrum is a spectrum, such as a Raman
spectrum, having peaks larger than the baseline. A negative
spectrum is a spectrum, such as an absorption spectrum,
having peaks smaller than the baseline.

As shown in Fig. 1a, the half-breadths of the square signal
and the sharp Gaussian signal are 8 and 4 points, respectively
(the width of a signal was defined as the total number of
points having amplitude that is 1% larger than the maximum
amplitude of this signal). Salient space, which can be obtained
by eqn (2), is shown in Fig. 1b–f. When the scale of the salient
space conforms to the half-breadth of the signal, the result of
H(x, r) reaches its maximum at the centre of the signal region.

Thus, detecting the maximum of H(x, r) can help derive
signals with different widths.

Next, the central coordinates of signal regions, Xsc, and the
half-breadth of signal regions, Rs, are obtained by detecting
the maximum of H.

ðXsc;RsÞ ¼

ðx; rÞ
Hðx; rÞ > Hðx; r � ΔrÞ and
Hðx; rÞ ¼ maxðHðxÞÞ and
Hðx; rÞ ¼ maxðHðx� 1; rÞ Hðx; rÞ Hðxþ 1; rÞÞ

�������

8><
>:

9>=
>;
ð3Þ

Here, Δr is the difference of two nearby scales.
Noises are neglected in eqn (3). When noises are existed,

as shown in Fig. 2, the maximum of H(x, r) is not
guaranteed to be at the centre of the signal region even if the
scale of salient space conforms to the half-breadth of the
signal.

The most common method to decrease the influence of
noise is denoising. However, most denoising methods inevit-
ably weaken the signal intensity and induce spectrum distor-
tion. Thus, we choose to revise eqn (3) instead of denoising
the original spectrum before SSD.

First, the absolute mean of the noises, μr, of each scale of
the salient space is calculated. All points larger than kμr and
the mean value of the d neighbourhoods larger than μr are
then treated as candidate points of signal regions.

μr ¼
1

Nh � 1

XNh

x¼2

absðHðx; rÞ � Hðx� 1; rÞÞ ð4Þ

Xts ¼ x

Hðx; rÞ > kμr
1

2d þ 1

Xxþd

i¼x�d

Hði; rÞ > μr

�������

8><
>:

9>=
>; ð5Þ

Here, Nh is the total number of points in H(x, r), and k and
d are constants; their values can be set as 2 and 4, respectively
(these values correspond to the confidence level of 99% under
normal distribution).

Fig. 1 Saliency of typical salient space. The horizontal and vertical axes
of (b)–(f ) represent position and saliency, respectively.

Fig. 2 Noise influence. The maximum saliency of the square signal is
not at the centre of the signal and is not obtained when the scale equals
half-breadth.
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If only signal regions with peaks clearly larger than the
noise can be detected, then k can be set at a value larger than 3,
and eqn (5) can be simplified as eqn (6).

X ts ¼ fxjHðx; rÞ > kμrg ð6Þ
Next, the start and end coordinates, Xs and Xe, of the signal

regions are obtained by eqn (7) and (8), respectively.

Xs ¼ fðx1 � rTÞ< ðxj � rTÞjxj � xj�1 > rT j [ ð2;NsÞg; ð7Þ

Xe ¼ fðxj þ rTÞ< ðxNs þ rTÞjxjþ1 � xj > rT j [ ð1;Ns � 1Þg:
ð8Þ

Here, xj represents the candidate signal points, Ns is the
total number of these points, and x1 and xNs

are the first and
the last candidate signal points, respectively. rT is a threshold,
and it should be set at 3Δr to get good results.

2.2 Signal extraction

Once the signal regions are detected, only the baseline of the
signal regions is necessary to extract the signals. Thus, we cut
the baseline into many segments, and we fitted each segment
separately. Despite many baseline fitting algorithms, such as
linear interpolation,6 iterative moving averaging,25 and Whittaker
Smoother,26 we choose a lower-order polynomial function27 to
fit the baseline. This choice is attributed to the smooth, real-
time polynomial fitting while showing fidelity to the original
data when the spectrum is divided into many segments.

First, a certain number of neighbour points of a signal
region are chosen. Second, the baseline of this signal region is
fitted by a lower-order polynomial function using the chosen
points. Finally, signals can be extracted by subtracting the
baseline from the spectrum at signal regions.

3 Experimental

We applied the algorithm to various spectra, including simple
simulated spectra with constructed data, complex simulated
spectra with absorption data, Nuclear Magnetic Resonance
(NMR) data, real absorption spectra obtained by experiments
and real Raman spectra from the Handbook of Minerals
Raman Spectra database,28 to evaluate its performance.

Simulated spectra were used because their theoretical signal
regions and intensities were known; thus, evaluating the accu-
racy of the algorithm was easy. Real spectra were utilised because
they can indicate the effect of an algorithm in real applications.

3.1 Simple simulated data

Simple simulated data were employed because they can show
the process and results clearly.

All simulated spectra can be expressed as follows:

sðxÞ ¼ aðxÞ þ nðxÞ þ bðxÞ: ð9Þ
Here, a(x) is the theoretical signal, n(x) is the Gaussian

noise, b(x) is the theoretical baseline and s(x) is the simulated
spectrum.

More than 20 000 spectra were simulated with various SNRs
(signal-to-noise ratios) and SBRs (signal-to-baseline ratios) to
evaluate SSD performance. A Gaussian curve was used as the
theoretical baseline in these spectra. The Gaussian curve used
was typical; it had abundant curvatures in a single line. Four
typical signals were constructed to enhance the simulation:
one square signal, one sharp Gaussian signal, one broad
Gaussian signal and one substantially overlapped signal. Fig. 3
shows the entire process; SNR and SBR used in this example
were 30 and 0.2, respectively.

3.2 Complex simulated data

Spectra, such as real absorption and real NMR spectra, con-
taining large amounts of data were simulated.

From the HITRAN spectroscopic database,29 we can obtain
the absorption intensity coefficient, a(v), of C2H2. We chose
the coefficient larger than 0.0059 × 10−19 as pure absorption
peak, multiplied it by 5 × 1019 and designed each peak as
Gaussian distribution. Thus, we derived the pure absorption
spectrum, a(x). The spectrum length was designed as 7200
sample points, mimicking that of the C2H2 experimental
spectra. Noise was then added to the pure absorption spec-
trum. Finally, the spectrum with noise was added to the
theoretical baseline. The theoretical baseline, b(x), was set as a
slash connected with a Gaussian curve. This kind of baseline
has abundant curvature, and it is more typical than a
Gaussian curve.

The simulated NMR spectrum was extracted from the real
NMR spectrum offered by Qingjia Bao.7 First, we used DoG to
detect the signal regions of real spectrum. Second, we fitted
the baseline based on segmented lower-order polynomial
fitting and segmented kernel smoothing.22 Third, we extracted
the signals as theoretical spectrum by subtracting the baseline
from the real spectrum at signal regions. Finally, we added the
noise and theoretical spectrum to the theoretical baseline,
with its theoretical baseline, b(x), set as a slash connected with
a Gaussian curve.

Fig. 3 Illustration of the whole process of simulated signal extraction.
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3.3 Real absorption data

The efficiency of the SSD algorithm was also evaluated by C2H2

absorption spectrum. The gas sensing system we used was an
intra-cavity fibre ring laser gas sensing system (Fig. 4). The
system consisted of an EDFA pumped by a 980 nm diode laser,
a variable attenuator, a circulator, a gas cell with reflector, an
isolator, a fibre coupler, and a Fabry–Perot tunable filter (TF),
and its transmission wavelength was controlled by the control-
ling voltage from data acquisition equipment (DAQ); the
system also consisted of two InGaAs PIN photodetectors with
an operating wavelength of 1000–1650 nm and a DAQ of
NI-USB-6251. The EDFA wavelength region was 1525–1565 nm.
The bandwidth and the free spectral range of TF were 0.0353
and 200 nm, respectively. The length of the gas cell was 20 cm,
and the gas concentration was 1%.

We utilised the amplified absorption intensity coefficient,
a(v), as the theoretical intensity in the experiments.

3.4 Real Raman data

Real Raman spectral data were obtained from the Handbook
of Minerals Raman Spectra database. These real spectra have
different SNRs and baselines. We chose three typical spectra,
i.e., spectra of adamite, fluorliddicoatite and abelsonite. The
baseline of adamite is similar to a Gaussian curve connected
with a slash. The baselines of fluorliddicoatite and abelsonite
are more complex. These three spectra simultaneously have
sharp, broad, strong and weak signals. Additionally, these
spectra have signals that overlap with each other. The corres-
ponding processed spectra were also given in the database. We
used the processed spectra as the criteria for our comparison
of SSD, DoG and airPLS.

4 Results and discussion
4.1 Influences of SNR and SBR

The influences of SNR and SBR were studied using simple
simulated data. Table 1 shows that the accuracy of SSD was
influenced by SNR and SBR in the following ways. (1) When
SNR and SBR were smaller than 20 and 0.5, respectively, signal
extraction may fail; otherwise, signals can be extracted all the
time. (2) As SNR and SBR increased, the standard derivation of
power error always decreased, whereas the mean error some- T
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Fig. 4 Schematic of the C2H2 experiment system.
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times oscillated if SNR was smaller than 50. (3) When SNR was
smaller than 50, the mean and standard derivation of power
error worsened rapidly as the SNR decreased; otherwise, they
were almost stable and had high accuracies. The largest mean
and standard derivation values were 1.1% and 3.3%, respect-
ively. (4) The change in the accuracy with SNR was larger than
that with SBR.

The statements (1), (2) and (3) indicate that SSD has strong
anti-noise and anti-baseline-distortion capability; however, its
accuracy and stability are still influenced by noise and baseline
distortion. Thus, SSD cannot be used only when both SNR and
SBR are too small. The statements (2), (3) and (4) indicate that
the influence of SNR is larger than that of SBR and thus,
improving the denoising performance may be important for
future studies.

SBR and power error are defined as follows:

SBR ¼ maxðaðxÞÞ
maxðbðxÞÞ ð10Þ

Error ¼
Pn
i¼1

a2EðxiÞ �
Pn
i¼1

a2ðxiÞ
Pn
i¼1

a2ðxiÞ
: ð11Þ

Here, n is the number of extracted signal points, aE(xi) is
the intensity of the extracted signal and a(xi) is the intensity of
the theoretical signal.

4.2 Comparison with other algorithms

Fig. 5 shows the signal region detection results of two simple
simulated spectra. SimuSpec and TheoSignal represent the
simulated spectrum and theoretical signals, respectively, SSD
represents the proposed algorithm, DoG denotes the DoG
algorithm, 3ST represents the thresholding algorithm, WLD
denotes wavelet decomposition combined with the threshold-
ing algorithm and airPLS denotes airPLS combined with the
thresholding algorithm. Of all the detected signal regions, the
one detected by SSD is the most accurate, regardless of
whether the theoretical baseline is chosen as a Gaussian curve
or a horizontal line and regardless of whether the signal is
negative or positive. Please note that in Fig. 5a, no signal
points were detected by 3ST or WLD. However, the above-men-
tioned comparison is only based on a contaminated spectrum.
A good result can also be obtained by 3ST when the baseline is
a horizontal line and SNR is high.

DoG and airPLS were used to compare with SSD in the next
experiments because they are more accurate than 3ST and
WLD.

Accuracy. Fig. 6 presents the results of a simulated C2H2

absorption spectrum. The signal regions detected by SSD are
more accurate than those detected by DoG. Additionally, the
overlapped signal regions near 1527 nm, and the weak signal
region, which is drowned out by the noise near 1540 nm, are
accurately detected. All signal regions are detected without any
false-positive or false-negative considerations. Even while eval-
uating the accuracy in points, the false-positive (ratio of mis-

taken signal points to total signal points) and false-negative
(ratio of missed signal points to total signal points) values are
found to be below 6.5%. The total false value (ratio of both
mistaken points and missed points to total points) is only
1.06%. Fig. 6c shows that at 1535.4 nm, even SSD and DoG
extract signals; however, the signal intensity extracted by SSD
is often more accurate than that extracted by the DoG algor-
ithm. The reason may be the difference between their denois-
ing capabilities.

DoG has denoising capability because it obtains its scale
space by convolution, as shown in eqn (12). Convolution, like a
smooth filter, is influenced by the convolution radius. When
the radius is too small, it cannot eliminate the noise, and
some noise points, such as those at about 1526.1 and
1533.6 nm, may be treated as signal points, as shown in
Fig. 6b. If the radius is too large, some signal points, such as
that at about 1526.7 nm, are reduced and treated as baseline
points, as shown in Fig. 6b.

Dðx; σÞ ¼ ðGðx; kσÞ � Gðx; σÞÞ � IðxÞ: ð12Þ

Here, G(x, kσ) and G(x, σ) are the variable-scale Gaussian
functions, σ is in proportion to the convolution radius, I(x) is
the original input spectrum and D(x, σ) is the Difference-of-
Gaussian. By detecting the maximum or minimum of D(x, σ)

Fig. 5 Comparison of different methods: (a) Gaussian and (b) horizontal
baselines. SimuSpec and TheoSignal represent the simulated spectrum
and theoretical signals, respectively; SSD represents the proposed algo-
rithm, DoG denotes the DoG algorithm, 3ST represents the thresholding
algorithm, WLD and airPLS denote the wavelet decomposition and
airPLS combined with the thresholding algorithm, respectively. The
lower part of (a) and (b) are the extracted signals and extracted signals
with −0.4 offset in y coordination, respectively.
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in various scale spaces, we can detect signals with various
widths.

SSD uses noise statistics, as shown in eqn (4) and (5), to
decrease the influence of noise. Additionally, SSD is not
affected by the baseline or scale of salient space, and its confi-
dence level is larger than 99%. Thus, SSD is more accurate
than DoG.

AirPLS can correct the spectrum, but neither its signal
region detection nor intensity accuracy is as good as those of
SSD or DoG, as shown in Fig. 6b and c; this is because airPLS
does not have strong anti-noise capacity, and the anti-baseline-
distortion capability is not as good as is supposed.

Fig. 7 presents the results of a simulated NMR spectrum.
The analysis is omitted here for briefness because the
phenomena of Fig. 7 are the same as those of Fig. 6. Thus, we
can conclude that SSD is more accurate than DoG, and DoG is
more accurate than airPLS.

Real-time performance. Signal extraction by SSD is real-time,
because it does not use time-consuming algorithms such as
convolution or iteration. However, some parameters can still
influence real-time performance. One is the difference of two
nearby scales, Δr. The other is the range of r. A constant Δr = 2
is used in this paper to guarantee the accuracy and real-time

performance of SSD. If more accuracy is necessary, then Δr
should be set to a smaller value. If higher real-time perform-
ance is desired, then r can be set as a geometric series. The
variance range of r is set to 3–19, including the possible half-
breadths of the master signal regions. In this paper, the time
for signal region detection is 0.011 s, which is only 1/40 of that
of DoG.

4.3 Real absorption data

An example of a C2H2 absorption spectrum showing a poor
baseline and broad, contaminating peaks is depicted in
Fig. 8a. SSD accurately extracts the signal regions even when
the original spectrum is distorted sharply near 1526 nm. As
Fig. 8b shows, all signal regions are extracted accurately by
SSD, and no false-positive or false-negative observations are
observed. The results are in accordance with the simulation
results of Fig. 6, with the exception of intensity.

Many factors, such as existing noise and inaccurately
extracted baseline, can induce the intensity difference between
the theoretical and extracted spectra. However, the most
important reason is that the spectrum is obtained by the intra-
cavity fibre ring laser gas sensing system. In this system, the
absorption length, L, is not absolutely identical because of the

Fig. 6 Simulated data of C2H2 absorption spectrum: (a) theoretical
spectrum, (b) signal region detection and (c) signal extraction.

Fig. 7 Simulated data of NMR spectrum: (a) theoretical spectrum, (b)
signal region detection and (c) signal extraction.
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difference in the laser’s settling time at various wavelengths
(the larger the settling time, the longer the absorption length).
Although the concentration, c, is a constant, the product of
c × L differs at various wavelengths. Thus, the proportions of the
real absorption intensity, K, and absorption intensity coefficient,
a(v), are not the same by Lambert–Beer law as follows:

c ¼ K=ðaðvÞ � LÞ ) c� L ¼ K=aðvÞ: ð13Þ
Using the same intracavity fibre ring laser gas sensing

system, the settling time, ts, of large absorption peaks is found
to be shorter than that of the small absorption peaks of both
sides. The settling time of large absorption peaks near
1530 nm is the shortest and then, it increases slightly as the
wavelength increases. Considering L = v × ts, we can say that
the proportion, K/a(v), of large absorption peaks should be
smaller than that of the small absorption peaks of both sides.
The proportion, K/a(v), of large absorption peaks near
1530 nm should be the smallest, and it should increase
slightly with the increase in the distance between the wave-
length of the peak and 1530 nm. Fig. 8 shows this deduction.

From Fig. 8 and the analysis mentioned above, we can see
that SSD can extract signals from real absorption data, and the
result of SSD is better than that of DoG or airPLS.

4.4 Real Raman data

Fig. 9 presents the results of adamite spectrum. The extracted
signals obtained by SSD concur with the processed results of
the dataset, especially for the signals between 800 and
950 cm−1. Near 200 cm−1, the extracted signal is slightly larger
than the database result, but it is still more accurate than the
results obtained by DoG and airPLS.

The raw spectra of fluorliddicoatite and abelsonite are even
more complex than the adamite spectrum, and identifying
where baseline and signals are located, even manually, is
difficult. The fluorliddicoatite result obtained by SSD almost
concurs with the database result, and it is more accurate than
the results obtained by DoG and airPLS. The abelsonite result
is not as good as the adamite or fluorliddicoatite result;
however, it is better than the result obtained by DoG or airPLS.
Fig. 11b shows that the intensity data near 750 and 1210 cm−1

obtained by SSD are less accurate than the results obtained by
airPLS; however, the results of SSD are better than those of
airPLS or similar with those of airPLS at other wavenumber s.
The results obtained by DoG are the least accurate for the
abelsonite spectrum. Thus, SSD is the most effective method
for the signal extraction of Raman spectra.

SSD is more accurate than DoG and airPLS due to the
same reasons mentioned in section 4.2. AirPLS does not
have strong anti-noise capability, and the anti-baseline-dis-
tortion capability is not as good as is supposed. DoG has
strong anti-noise and anti-baseline-distortion capability;
however, its convolution radius may influence the signal
region detection.

Fig. 9–11 also illustrate that the overlapping of the signals
may influence the accuracy of the intensity of the extracted
signals, but Table 1 does not show this phenomena. When
many signals overlap with each other and combine to form a
signal that is too broad, such as the signal near 200 cm−1 of
Fig. 9 and the signal near 750 cm−1 of Fig. 11, some signal
points may be treated as baseline points. Thus, the accuracy of
the fitted baseline declines and ultimately influences the accu-
racy of the intensity of these signals. Apart from that, the

Fig. 8 Experimental data of C2H2 absorption spectrum: (a) signal
region detection and (b) signal extraction. Fig. 9 Real adamite spectrum: (a) signal region detection and (b) signal

extraction.
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intensity of the extracted signals is accurate and is not influ-
enced by the signal and baseline shapes.

5 Conclusions

We proposed an SSD algorithm for signal extraction.
Experimental results showed that the new algorithm is

effective for most kinds of spectra such as absorption, NMR
and Raman spectra. Three main improvements were obtained
by using this algorithm. First, SSD could automatically and
accurately extract signals even if the spectrum contained broad
and sharp peaks synchronously with noise. Second, SSD could
minimize the influence of the baseline distortion. Lastly, the
proposed algorithm exhibited high real-time performance
because it did not require iteration or convolution. The time
for signal region detection was only 0.011 s. The total time for
signal extraction was only about 0.031 s. We showed that SSD
is an enhanced signal extraction method in which the results
were not influenced by the baseline or signal shape, and it
exhibited anti-noise capability and better real-time perform-
ance. Since the SNR value still influenced the accuracy of the
extraction result when SNR was smaller than 50, the improve-
ment of the denoising performance is considered in our fol-
lowing studies.
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