An iron porphyrin-based conjugated network wrapped around carbon nanotubes as a noble-metal-free electrocatalyst for efficient oxygen reduction reaction†
Abstract
Developing an efficient, robust, and noble-metal-free catalyst for the oxygen reduction reaction (ORR) is crucial for the large-scale commercialization of fuel cells and metal–air batteries. Herein, we report a structurally well-defined iron porphyrin-based conjugated network on carbon nanotubes ((FeP)n-CNTs) as a novel electrocatalyst for the ORR. Its superior electrocatalytic activity toward the ORR is demonstrated by the high-performance catalytic activity of (FeP)n-CNTs with a positive ORR onset potential and half-wave potential (E1/2 ∼ 0.76 V vs. RHE) values as well as outstanding durability and methanol tolerance in alkaline media. In addition, the low H2O2 yield illustrates that the ORR occurs mainly via the direct four-electron (4e−) pathway, and testing shows that the small amount of produced H2O2 can be rapidly consumed through both electrochemical reduction and oxidation. Our results demonstrate that the as-prepared (FeP)n-CNT catalyst is a promising noble-metal-free catalyst for potential applications in fuel cells and metal–air batteries.
- This article is part of the themed collections: HOT articles in Inorganic Chemistry Frontiers for 2016 and 2015 Emerging Investigators by ICF