A comparison of carbon supports in MnO2/C supercapacitors†
Abstract
This article presents a comparison of three typical carbon supports, carbon nanotubes (CNTs), reduced graphene oxide (rGO), and acetylene black (AB), with regards to their performance in MnO2 supercapacitors. To exclude the influence of MnO2, uniform-sized MnO2 nanoflakes with a width of ∼50 nm were used to fabricate three MnO2/C composites. The working electrodes were prepared using a consistent procedure to keep all three types of MnO2/C electrodes in the same configuration. The influence of these three carbon supports on capacitive performance and cyclability was studied. In particular, the capacitance contribution of carbon supports was subtracted from the overall capacitance. The contribution from MnO2 was compared among these three types of composites and it was found that rGO could enhance the capacitive performance of MnO2 at slow scan rates. However, MnO2/CNTs and MnO2/AB exhibited better capacitive performance at high rates and better stability.
- This article is part of the themed collection: Materials for Energy storage