An overview of Joule heating in energy storage materials and applications
Abstract
Joule heating, a fundamental process converting electrical energy into heat, can be used to prepare many materials for energy storage. This review explores the multifaceted role of Joule heating. The application of Joule heating in the preparation of graphene, graphene oxide fibers, metastable 2D materials, boron carbon nitride and carbon nanotubes, as well as optimization and regeneration of energy storage materials, is summarized. Also, we focus on various energy storage systems such as batteries, supercapacitors, electrode material recycling, solid-state electrolytes and current collectors. Additionally, this paper discusses the applications, principles, advantages, and challenges of Joule heating, aimed at enhancing the overall performance and longevity of energy storage materials. By amalgamating crucial insights from existing research, this review aims to comprehensively understand the role and significance of Joule heating in energy storage technologies for energy material applications.
- This article is part of the themed collection: Journal of Materials Chemistry C Recent Review Articles