Recent advances of dinuclear dysprosium-based single-molecule magnets: from mechanisms to application
Abstract
Lanthanide-based single-molecule magnets (Ln-SMMs) hold unique potential for applications in spintronic devices, ultra-high-density information storage and quantum information processing due to their distinctive structure and large intrinsic magnetic anisotropy. Dysprosium-based SMMs (Dy-SMMs) have emerged as extraordinary candidates for constructing SMMs with high-performance thanks to their large magnitude quantum number and anisotropy. However, quantum tunneling of magnetization (QTM) in mononuclear systems results in a decrease of zero-field magnetization and a decrease or even loss of coercive force. The optimal solution to this issue is to increase the number of lanthanide ions in the SMM system, owing to the magnetic exchange interaction within the molecules that has a positive effect on suppressing QTM. Among multinuclear-based Dy-SMMs, dinuclear dysprosium SMMs (Dy2-SMMs) have been selected as the simplest model to investigate the effect of magnetic interaction on QTM. However, previous studies have not clearly elucidated how magnetic exchange in the Dy2-SMM system affects slow magnetic relaxation. Hence, this review attempts to elucidate the intricate relaxation mechanism of Dy2-SMMs. The strategies for designing and manipulating Dy2-SMMs are also discussed in detail. Meanwhile, the development of Dy2-SMM-based multifunctional materials is summarized in this review. This study investigates the relaxation mechanisms and magneto-structural correlations in Dy2-SMMs, offering strategies for the design and synthesis of high-performance Dy2-SMMs (HP-Dy2-SMMs) to advance research in this field.
- This article is part of the themed collection: Journal of Materials Chemistry C Recent Review Articles