Designing antibacterial materials through simulation and theory
Abstract
Antibacterial materials have a wide range of potential applications in bio-antimicrobial, environmental antimicrobial, and food antimicrobial fields due to their intrinsic antimicrobial properties, which can circumvent the development of drug resistance in bacteria. Understanding the intricate mechanisms and intrinsic nature of diverse antibacterial materials is significant for the formulation of guidelines for the design of materials with rapid and efficacious antimicrobial action and a high degree of biomedical material safety. Herein, this review highlights the recent advances in investigating antimicrobial mechanisms of different antibacterial materials with a particular focus on tailored computer simulations and theoretical analysis. From the view of structure and function, we summarize the characteristics and mechanisms of different antibacterial materials, introduce the latest advances of new antibacterial materials, and discuss the design concept and development direction of new materials. In addition, we underscore the significance of employing simulation and theoretical methodologies to elucidate the intrinsic antimicrobial mechanisms, which is crucial for a comprehensive comprehension of the control strategies, safer biomedical applications, and the management of health and environmental concerns associated with antibacterial materials. This review could potentially stimulate further endeavors in fundamental research and facilitate the extensive utilization of computational and theoretical approaches in the design of novel functional nanomaterials.
- This article is part of the themed collections: Journal of Materials Chemistry B Recent Review Articles and Celebrating 10 years of Emerging Investigators in Journal of Materials Chemistry B