Regulating the d-band center of Pt for highly effective H2 storage through toluene hydrogenation at low temperatures†
Abstract
Liquid H2 storage systems based on organic molecules provide a feasible approach for the safe storage and transportation of hydrogen energy. However, the microstructure sensitivity of Pt catalysts for toluene hydrogenation leads to significant challenges in optimizing their catalytic performance. Herein, the d-band center of Pt nanoparticles regulated by controlling their electronic structures has been demonstrated as an effective parameter for modulating their catalytic activity for toluene hydrogenation. Mechanism investigations revealed that the downshift of the d-band center could weaken the adsorption of methylcyclohexane on the surface of Pt nanocatalysts, thereby facilitating the hydrogenation of toluene. The Pt/Al2O3 catalysts, with an optimized d-band center of −5.79 eV, exhibited the highest catalytic activity for toluene hydrogenation with a turnover frequency of 6693 h−1 at 80 °C and 2 MPa H2. This finding provides potential theoretical guidance for the rational design of Pt-based catalysts for toluene hydrogenation.
- This article is part of the themed collection: Journal of Materials Chemistry A HOT Papers