Research progress on zinc oxide-based heterojunction photocatalysts
Abstract
At present, the crisis of declining energy resources and environmental pollution has become a major global challenge. In this case, photocatalysis is a very efficient technology for the production of renewable energy and the degradation of pollutants. Among the various photocatalysts, zinc oxide-based photocatalysts have emerged as some of the most promising photocatalysts due to their stability and environmentally friendly nature, and they have a wide range of applications in pollutant degradation, photocatalytic water splitting for hydrogen production, CO2 reduction, etc. Although a lot of research has been conducted to enhance the performance of photocatalysts, there is still a large gap in the exploration of heterojunctions and their effects on photocatalytic efficiency. In this paper, we aim to fill this gap via in-depth analysis of the influence of different heterojunction structures in zinc oxide-based photocatalysts on various applications. Additionally, other effective strategies to improve their photocatalytic performance are summarized, providing important insights for promoting the development of photocatalytic efficiency.
- This article is part of the themed collection: Journal of Materials Chemistry A Recent Review Articles