Review of neuromorphic computing based on NAND flash memory
Abstract
The proliferation of data has facilitated global accessibility, which demands escalating amounts of power for data storage and processing purposes. In recent years, there has been a rise in research in the field of neuromorphic electronics, which draws inspiration from biological neurons and synapses. These electronics possess the ability to perform in-memory computing, which helps alleviate the limitations imposed by the ‘von Neumann bottleneck’ that exists between the memory and processor in the traditional von Neumann architecture. By leveraging their multi-bit non-volatility, characteristics that mimic biology, and Kirchhoff's law, neuromorphic electronics offer a promising solution to reduce the power consumption in processing vector–matrix multiplication tasks. Among all the existing nonvolatile memory technologies, NAND flash memory is one of the most competitive integrated solutions for the storage of large volumes of data. This work provides a comprehensive overview of the recent developments in neuromorphic computing based on NAND flash memory. Neuromorphic architectures using NAND flash memory for off-chip learning are presented with various quantization levels of input and weight. Next, neuromorphic architectures for on-chip learning are presented using standard backpropagation and feedback alignment algorithms. The array architecture, operation scheme, and electrical characteristics of NAND flash memory are discussed with a focus on the use of NAND flash memory in various neural network structures. Furthermore, the discrepancy of array architecture between on-chip learning and off-chip learning is addressed. This review article provides a foundation for understanding the neuromorphic computing based on the NAND flash memory and methods to utilize it based on application requirements.
- This article is part of the themed collections: Recent Review Articles and Memristors and Neuromorphic Systems