Thermoelectric nanowires for dense 3D printed architectures†
Abstract
The large-scale employment of 3D printed inorganic thermoelectrics is primarily constrained because of their lower efficiencies as compared to those fabricated from conventional methods such as spark plasma sintering and hot-pressing. This originates from the significant challenge in the densification of printed parts, particularly through the direct-ink-writing fabrication process, which demands a high binder content for printability. To achieve high-density printed thermoelectrics, the ink formulation process often involves the addition of substantial filler content and sintering aids, coupled with prolonged sintering periods. Here, we propose a strategy to resolve the low densification issue of 3D printed thermoelectrics through a binder-less and sintering aid-free thermoelectric nanowire ink system that can achieve dense thermoelectric structures (up to 82.5% theoretical density). The increase in density and corresponding enhancement of thermoelectric material efficiency are attained in a more tunable and controlled manner without compromising the material composition. A high filler-derived density index (FDI) of 2.51 is also achieved, implying the potential to obtain high-density parts with minimal filler content, thus unlocking a cascade of profound impacts. Crucially, this advancement enables the possibilities of anisotropic engineering in thermoelectric materials, thereby shattering the limitations that have hindered the widespread adoption of 3D printed inorganic thermoelectrics.
- This article is part of the themed collection: Celebrating International Women’s day 2024: Women in Materials Science