Thermosensitive drug-loaded liposomes for photothermal and chemotherapeutic treatment of colon cancer†
Abstract
Cancer is a grave threat to human life and well-being today. Photothermal therapy, a non-invasive method that converts light energy into heat energy to eliminate tumor cells, has emerged as a promising approach. In this study, bismuth nanosheets were utilized as photothermal agents, while 5-fluorouracil and metformin served as model drugs. By designing a temperature-sensitive liposome (BiNSs/Met/5-FU@TSL) that encapsulates bismuth nanosheets, a multifunctional drug delivery system was developed, combining photothermal therapy with synergistic chemotherapy for enhanced anti-tumor effects. Through transmission electron microscopy, it was confirmed that bismuthene nanosheets were successfully encapsulated in stable and uniformly spherical liposomes. Photothermal performance tests demonstrated the system's effectiveness and stability in generating heat. In vitro release experiments further confirmed the thermosensitive liposomes’ responsiveness to photothermal stimuli. Both in vitro and in vivo studies showcased the system's excellent anti-tumor effects and the safety of the blank carriers. This research presents a novel concept, providing insights into the combination of tumor photothermal therapy with chemotherapy, opening new avenues for effective cancer treatment.
- This article is part of the themed collection: Nanoengineered Biomaterials for Anticancer and Antimicrobial Drug Targeting