Valorization of plastic waste via chemical activation and carbonization into activated carbon for functional material applications
Abstract
Addressing the complex issue of plastic waste disposal requires a nuanced approach, as no single solution proves universally effective. This review advocates for a comprehensive strategy, combining mechanical recycling and chemical methods to manage plastic waste while emphasizing the transformative potential of carbonization and activation processes specifically. With a focus on chemical activation, this review explores the synthesis of high surface area activated carbon (AC) from diverse plastic sources including polyesters (e.g., polyethylene terephthalate), polyolefins (e.g., polyethylene, polypropylene), and non-recyclable thermoset resins (e.g., epoxy, phenolics). The resulting AC products exhibit notable potential, with high surface areas exceeding 2000 m2 g−1 in some cases. Furthermore, the adsorptive behavior of the plastic derived ACs are discussed with respect to common pollutants such as dyes and CO2 in addition to emerging pollutants, such as micro/nano-plastics. Overall, this work highlights carbonization and chemical activation as important upcycling methods for plastic wastes that may otherwise end up in landfills or spills into the environment. Given the urgency of plastic waste disposal, it is recommended that the feasibility and scalability of plastic-derived AC production is explored in future work for the potential replacement of conventional AC feedstocks derived from coal or biomass.
- This article is part of the themed collection: Recent Review Articles