Versatility of group VI layered metal chalcogenide thin films synthesized by solution-based deposition methods
Abstract
Among transition metal dichalcogenides (TMDs), group VI layered metal (Mo and W) dichalcogenides (LMD) have received increased research interest for numerous applications due to their layered structure as well as interesting physicochemical properties that facilitate tunable physical, chemical, electrical and optical properties. These features extend LMDs’ use in energy storage, catalysis, optoelectronics etc. The use of solution-based methods such as the successive ionic layer adsorption and reaction (SILAR), chemical bath deposition (CBD), electrodeposition, and hydrothermal method for the deposition of group VI LMDs over vapor-based methods such as chemical vapor deposition (CVD) and various sputtering techniques allows one to tune the physicochemical properties. With such promising features, solution-based deposited group VI LMDs possess a vast scope for their application in diverse fields. Hence, it is important to underscore the research progress in group VI LMDs and their future scope. The present study focuses on the versatility of solution-based deposited group VI LMDs in diverse fields. In addition, various solution-based deposition methods, different fascinating properties, and a thorough literature review of solution-based deposited group VI LMDs, along with the future scope, are discussed.
- This article is part of the themed collections: Journal of Materials Chemistry C Recent Review Articles and #MyFirstJMCC