On-site formation of silver decorated carbon as an anodeless electrode for high-energy density all-solid-state batteries†
Abstract
All-solid-state batteries (ASSBs) are promising alternatives to lithium-ion batteries owing to their high energy density and safety. Recent studies on “anodeless” electrodes with Li-soluble metallic materials (e.g., silver nanoparticles) and carbon materials in ASSBs have shown improvements in the energy density of these cells. However, poor dispersion between metal nanoparticles and carbon materials in anodeless electrodes leads to disproportionate electrochemical phenomena. Moreover, the dendritic growth and uneven reactions caused by these imbalances impair the life cycle of ASSB cells. To address this issue, we introduce carbon-supported silver nanoparticle-based anodeless electrodes. Ag ion complexes were thermally reduced, and the reduced silver nanoparticles were well dispersed on the carbon surface. This electrode reduces overpotential during the lithiation process with less silver and provides high-rate performance. An ASSB cell using the anodeless electrode with carbon-supported silver nanoparticles exhibits 91% capacity retention after 500 cycles.
- This article is part of the themed collection: Journal of Materials Chemistry A HOT Papers