An Ag–Au-PANI core–shell nanowire network for visible-to-infrared data encryption and supercapacitor applications†
Abstract
The intriguing electrochemical properties of polyaniline (PANI) have enabled the functionalization of other nanomaterials and facilitated the development of various smart devices. In this study, we demonstrate an Ag–Au-PANI multilayered core–shell nanowire network that works both as an electrochromic supercapacitor and visible-to-infrared multispectral display. By laminating the silver nanowires (AgNWs) with gold and subsequent laser sintering, we fabricated a highly conductive nanowire network electrode. To functionalize the metallic nanowire network, we electrodeposited PANI such that the resultant nanowire network can operate as an electrochromic supercapacitor device. Due to the reversibly variable optical properties of PANI by its unique redox processes, the electrochromic supercapacitor presented herein can display the energy storage level by its visible color and also by its temperature in the absence of light. In addition, since the identical architecture and material make-up can be utilized for the display application, we also demonstrate the data encryptable display that operates both in the visible and infrared wavelength region.
- This article is part of the themed collection: 1D/2D materials for energy, medicine, and devices