Electrocatalytic valorization of waste polyethylene furanoate (PEF) bioplastics for the production of formic acid and hydrogen energy†
Abstract
The use of bio-based plastics instead of fossil-derived plastics is a possible solution to mitigate the negative impact of energy crisis and climate change caused by extensive use of non-renewable fossil resources. Polyethylene furanoate (PEF) plastics are regarded as a potential alternative to replace polyethylene terephthalate (PET) plastics due to its sustainability and biodegradability, but they face similar problems including long degradation time and waste of carbon resources. In this work, different cobalt-based oxide catalysts have been used as electrocatalysts for the selective oxidation of PEF hydrolysates to produce formate. It was found that a NiCo2O4 electrocatalyst could achieve 85.8% conversion and a high faradaic efficiency of 98% towards formate production under the reaction conditions of ethylene glycol (EG) oxidation (pH = 14) at a constant potential of 1.40 V vs. reversible hydrogen electrode (RHE). In contrast to PEF degradation to waste organics and CO2 in the open environment, the electrochemical approach presented in this work provides an alternative strategy to produce valuable chemicals and hydrogen energy using waste PEF plastics.
- This article is part of the themed collection: Plastic Waste Utilisation: A cross-journal collection