Issue 9, 2023

Two-dimensional nanomaterial MXenes for efficient gas separation: a review

Abstract

Transition metal carbides/nitrides (MXenes) are emerging two-dimensional (2D) materials that have been widely investigated in recent years. In general, these materials can be obtained from MAX phase ceramics after intercalation, etching, and exfoliation to obtain multilayer MXene nanosheet structures; moreover, they have abundant end-group functional groups on their surface. In recent years, the excellent high permeability, fine sieving ability and diverse processability of MXene series materials make the membranes prepared using them particularly suitable for membrane-based separation processes in the field of gas separation. 2D membranes enhance the diversity of the pristine membrane transport channels by regulating the gas transport channels through in-plane pores (intrinsic defects), in-plane slit-like pores, and planar to planar interlayer channels, endowing the membrane with the ability to effectively sieve gas energy efficiently. Herein, we review MXenes, a class of 2D nanomaterials, in terms of their unique structure, synthesis method, functionalization method, and the structure–property relationship of MXene-based gas separation membranes and list examples of MXene-based membranes used in the field of gas separation. By summarizing and analyzing the basic properties of MXenes and demonstrating their unique advantages compared to other 2D nanomaterials, we lay a foundation for the discussion of MXene-based membranes with outstanding carbon dioxide (CO2) capture performance and outline and exemplify the excellent separation performances of MXene-based gas separation membranes. Finally, the challenges associated with MXenes are briefly discussed and an outlook on the promising future of MXene-based membranes is presented. It is expected that this review will provide new insights and important guidance for future research on MXene materials in the field of gas separation.

Graphical abstract: Two-dimensional nanomaterial MXenes for efficient gas separation: a review

Article information

Article type
Review Article
Submitted
27 11 2022
Accepted
27 1 2023
First published
27 1 2023

Nanoscale, 2023,15, 4170-4194

Two-dimensional nanomaterial MXenes for efficient gas separation: a review

Y. Wang, Z. Niu, Y. Dai, P. Mu and J. Li, Nanoscale, 2023, 15, 4170 DOI: 10.1039/D2NR06625D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements