Simple and robust phenoxazine phosphonic acid molecules as self-assembled hole selective contacts for high-performance inverted perovskite solar cells†
Abstract
For inverted perovskite solar cells (PSCs), the interfacial defects and mismatched energy levels between the perovskite absorber and charge-selective layer restrain the further improvement of photovoltaic performance. Interfacial modification is a powerful tool for defect passivation and energy level turning by developing new charge-selective materials. Herein, we report three new molecules, 2BrCzPA, 2BrPTZPA, and 2BrPXZPA as self-assembled hole selective contacts (SA-HSCs) by an economical and efficient synthetic procedure. Benefiting from the stronger electron-donating ability of phenothiazine and phenoxazine compared to that of carbazole, 2BrPTZPA and 2BrPXZPA showed more matched energy levels and decreased energy loss. In addition, the ITO substrate coated with 2BrPTZPA and 2BrPXZPA could induce higher-quality perovskite crystal growth without obvious grain boundaries in the vertical direction. Consequently, the corresponding inverted PSCs with decreased trap state density achieved high power convention efficiencies (PCEs) of 22.06% and 22.93% (certified 22.38%) for 2BrPTZPA and 2BrPXZPA, respectively. Furthermore, the 2BrPXZPA-based device with encapsulation retained 97% of the initial efficiency after 600 h of maximum power point tracking under one sun continuous illumination. Finally, 2BrPXZPA was also used for the surface modification of NiOx, and the inverted PSC based on the NiOx/2BrPXZPA bilayer achieved a higher PCE of 23.66% with an open circuit voltage of 1.21 V. This work extends the design strategy of SA-HSCs for efficient and stable inverted PSCs and promotes the commercialization process.
- This article is part of the themed collections: Nanoscale Most Popular 2023 Articles, 2024 Lunar New Year Collection and Honorary themed collection for Thomas P. Russell