Design and synthesis of covalently tethered “isoG-star” as a recyclable host for selective cesium separation†
Abstract
The isoguanosine self-assembled pentamer (isoG-star) exhibits remarkable selectivity for Cs+ binding over competing alkali and alkali earth metal cations, rendering it a promising extractor for radioactive waste 137Cs separation. However, to make isoG-star a practical material for Cs+ isolation, the development of a recyclable isoG-star material is required. In this study, a systematic screening of functional isoG derivatives was performed. By employing well-defined complex formation and post-assembly modification, a covalently tethered isoG5-star was prepared through olefin metathesis, utilizing a designed isoG monomer. The application of this newly developed covalently linked isoG-star enabled selective Cs+ extraction, followed by controlled solvent-induced H-bond dissociation. This resulted in the creation of a recyclable Cs+ extractor, demonstrating excellent cation selectivity and good reusability (over seven cycles) for the first time. Consequently, this new supramolecular macrocycle offers a practical new platform for the treatment of radiocesium (134Cs and 137Cs) in an environmentally friendly and highly effective manner.
- This article is part of the themed collections: 130th Anniversary of Wuhan University and 2023 Green Chemistry Hot Articles