Light-driven Pickering interfacial catalysis for the oxidation of alkenes at near-room temperature†
Abstract
In this study, we have developed an emulsion system combining plasmonic Au-loaded amphiphilic silica nanoparticles (Au/SiO2–C3) and tri(dodecyltrimethylammonium) phosphotungstate ([C12]3[PW12O40]) nanoparticles acting as an on-site photoassisted heater/activator and a catalyst, respectively, at the water/oil interface. The system exhibits a 5-fold increase of activity compared to the thermal reaction for the near-room temperature oxidation of alkenes with H2O2. The nanoparticles show excellent recyclability and structural stability. This study opens an avenue to design multiphase photoreactors for oxidation reactions at mild temperature, with a potential energy saving of 74% compared to that of thermally heated reactors at isoconversion.
- This article is part of the themed collections: 2023 Green Chemistry Hot Articles and International Symposium on Green Chemistry 2022