Plasmonic nanomaterials for solar-driven photocatalysis
Abstract
Plasmonic nanomaterials have spurred significant research interest in enhanced solar-driven photocatalysis due to their strong localized surface plasmon resonance (LSPR). As this rapid-developing research area has begun to raise and answer fundamental questions that determine the photocatalytic performance of plasmonic photocatalysts, it is an opportune time to evaluate the advancement and propose future trajectories. We first outline the fundamentals of LSPR, including its excitation, decay, and influencing factors. We then discuss three main enhancement mechanisms and their applicable scenarios for plasmonic photocatalysis. We then critically assess the recent works performed by our groups concerning plasmon-enhanced photocatalytic reactions. By introducing related works from other researchers, we demonstrate our contributions to the advancements of plasmonic photocatalysis. Finally, we discuss the current challenges and suggest future directions in three aspects: material development, mechanism exploration, and application extension. It is anticipated to delineate the state-of-the-art and direct future research in plasmon-enhanced value-added chemical transformations.
- This article is part of the themed collection: Chemical Communications HOT Articles 2023