High-loading metal atoms on graphdiyne for efficient nitrogen fixation to ammonia†
Abstract
Atomic catalysts have shown great potential in the field of catalysis because of their maximum atomic utilization, and high reaction selectivity and activity. Graphdiyne-based atomic catalysts have emerged as a new class of promising materials in catalysis. Here, a new graphdiyne-based manganese atomic electrocatalyst (MnSA/GDY) was designed and successfully synthesized via a facile in situ reduction strategy for electrochemical nitrogen fixation to ammonia. Experimental results reveal that single Mn atoms were successfully anchored and highly dispersed on the surface of GDY, forming a catalyst with a determined chemical structure, facilitated charge transfer capability and maximized active sites. These special characteristics provide MnSA/GDY with a high ammonia yield rate (up to 46.78 μg h−1 mgcat.−1) and faradaic efficiency (39.83%), as well as cycling durability, which outperform those of most reported conventional atomic electrocatalysts and heterostructured ones. This work broadens the application scope of GDY-based atomic catalysts and demonstrates their applicability in the field of energy conversion.
- This article is part of the themed collection: Single-Atom Catalysis