Single-atom catalysts: stimulating electrochemical CO2 reduction reaction in the industrial era
Abstract
Carbon monoxide and formic acid play a significant role in industrial processes and are exceedingly economical C1 products in electrochemical CO2 reduction reactions (ECR). To improve the yield and catalytic activity in ECR processes, numerous researchers have optimized catalysts and upgraded the electrolyzer. An increase in the electrocatalytic current density and production yield can significantly enable industrial electrochemical conversion from CO2 to CO/HCOOH. However, the crucial factor restricting the industrialization of ECR is the lack of high-efficiency catalysts. Thus, the development of efficient catalysts for ECR has been ongoing for decades. Traditional nanostructure catalysts suffer from poor product selectivity, unstable structure, and inhomogeneous catalytic active centers, seriously affecting the industrial process. In contrast, single-atom catalysts (SACs) process a uniform coordination environment of active centers, maximum atom-utilization efficiency, and impressive stability, which are suitable as catalysts for industrial ECR. This perspective highlights and summarizes the designed coordination of SACs to obtain a high yield of CO/HCOOH. Moreover, we discuss the fabrication of the electrolyzer and the method of techno-economic assessment (TEA). Finally, we summarize the opportunities and challenges for ECR in industrial processes.
- This article is part of the themed collections: Single-Atom Catalysis and Journal of Materials Chemistry A Recent Review Articles