Relativistic nonorthogonal configuration interaction: application to L2,3-edge X-ray spectroscopy†
Abstract
In this article, we develop a relativistic exact-two-component nonorthogonal configuration interaction (X2C-NOCI) for computing L-edge X-ray spectra. This article to our knowledge is the first time NOCI has been used for relativistic wave functions. A set of molecular complexes, including SF6, SiCl4 and [FeCl6]3−, are used to demonstrate the accuracy and computational scaling of the X2C-NOCI method. Our results suggest that X2C-NOCI is able to satisfactorily capture the main features of the L2,3-edge X-ray absorption spectra. Excitations from the core require a large amount of orbital relaxation to yield reasonable energies and X2C-NOCI allows us to treat orbital optimization explicitly. However, the cost of computing the nonorthogonal coupling is higher than in conventional CI. Here, we propose an improved integral screening using overlap-scaled density combined with a continuous measure of the generalized Slater–Condon rules that allows us to estimate if an element is zero before attempting a two-electron integral contraction.
- This article is part of the themed collections: Recent Advances in Modelling Core-Electron Spectroscopy and 2022 PCCP HOT Articles