Ordered assembly of non-planar vanadyl-tetraphenylporphyrins on ultra-thin iron oxide
Abstract
Stabilizing ordered assemblies of molecules represents the first step towards the construction of molecular devices featuring hybrid (organic–inorganic) interfaces where molecules can be easily functionalized in view of specific applications. Molecular layers of planar metal-tetraphenylporphyrins (MTPP) grown on an ultrathin iron oxide [namely Fe(001)–p(1 × 1)O] show indeed a high degree of structural order. The generality of such a picture is tested by exploiting non-planar porphyrins, such as vanadyl-TPP (VOTPP). These molecules feature a VO2+ ion in their center, with the O atom protruding out of the plane of the porphyrin ring. In this work, by employing diffraction, photoemission and X-ray absorption, we prove that non-planar VOTPP can nevertheless form a square and ordered superstructure, where porphyrin molecules lie flat with respect to the underlying substrate. Ab initio density functional theory simulations are used to elucidate the VO bond orientation with respect to the iron substrate.
- This article is part of the themed collection: New Trends and Challenges in Surface Phenomena, Carbon Nanostructures and Helium Droplets