Ordered mesoporous photocatalysts for CO2 photoreduction
Abstract
Artificial photosynthesis is the process that converts solar energy and CO2 to valuable chemicals over a photocatalyst through CO2 photoreduction (CO2PR). Ordered mesoporous materials (OMMs) highly improve photocatalytic activity and exhibit superior mass transfer, owing to their extensive specific surface area and intense/ordered pore-network. This review provides a comprehensive guide to recent developments and the future prospects of ordered mesoporous (OM) photocatalysts with respect to CO2PR. The configuration of intrinsic (solely comprising compound semiconductors) and extrinsic (doped with heteroelements) OM-photocatalysts, their decorated counterparts with functional groups and Lewis acids/bases, and their composites with semiconductors, co-catalysts, and metal complexes together with their corresponding advantages for application to CO2PR are introduced. A rich understanding of these techniques is offered by reviewing the pore structures and reaction mechanisms. This article provides new insights and reflects on the research advances in OM-photocatalysts in CO2PR over the past two decades.
- This article is part of the themed collection: Journal of Materials Chemistry A Recent Review Articles