Effect of polycyclosilane microstructure on thermal properties†
Abstract
Thermal characterization of polysilanes has focused on the influence of organic side chains, whereas little is understood about the influence of silane backbone microstructure on thermal stability, phase properties, and pyrolysis. To address this knowledge gap, we prepared three distinct polycyclosilanes: linear polymers synthesized from the cyclosilane building blocks 1,4Si6 and 1,3Si6, as well as a cyclic polymer of 1,3Si6. Thermal properties across the temperature range 25 to 600 °C were investigated using differential scanning calromietry (DSC) and thermogravimetric analysis (TGA). We found differences between linear and cyclic materials, including a phase transition unique to the cyclic polymer and lower rates of mass loss during pyrolysis. Density functional theory (DFT) calculations provided insight into microstructure-dependent pyrolysis.
- This article is part of the themed collection: Molecularly Defined Polymers: Synthesis and Function