Issue 3, 2021

Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles

Abstract

High-entropy alloy (HEA) nanoparticles (NPs) hold great promise in electrocatalysis because of their nearly unlimited compositions, tailorable active sites, and high durability. However, the synthesis of these compositionally complex structures as monodisperse NPs remains a challenge by colloidal routes because the different rates of metal precursor reduction lead to phase separation. Here, we report the conversion of core@shell NPs into HEA NPs through annealing, with conservation of sample monodispersity. This potentially general route for high-quality HEA NPs was demonstrated by preparing PdCu@PtNiCo NPs via seed-mediated co-reduction, wherein Pt, Ni, and Co were co-deposited on PdCu seeds in solution. These multimetallic NPs were then converted to single-crystalline and single-phase PdCuPtNiCo NPs through annealing. On account of their small particle size, highly dispersed Pt/Pd content, and low elemental diffusivity, these HEA NPs were found to be a highly efficient and durable catalyst for the oxygen reduction reaction. They were also highly selective for the four-electron transfer pathway. We expect that this new synthetic strategy will facilitate the synthesis of new HEA NPs for catalysis and other applications.

Graphical abstract: Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles

Supplementary files

Article information

Article type
Communication
Submitted
19 11 2020
Accepted
11 1 2021
First published
22 1 2021

Nanoscale Horiz., 2021,6, 231-237

Author version available

Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles

Y. Chen, X. Zhan, S. L. A. Bueno, I. H. Shafei, H. M. Ashberry, K. Chatterjee, L. Xu, Y. Tang and S. E. Skrabalak, Nanoscale Horiz., 2021, 6, 231 DOI: 10.1039/D0NH00656D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements