Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects
Abstract
The progress of two-dimensional (2D) MXene-derived QDs (MQDs) is in the early stages, but the materials have aroused great interest due to their high electrical conductivity, abundant active catalytic sites, easily tunable structure, satisfactory dispersibility, remarkable optical properties, good biocompatibility, manifold functionalizations, and so on. However, up to now, there is still no review paper on MQDs. Herein, the research advances of MQDs, including their synthetic routes (top-down and bottom-up methods), properties (structural, electronic, optical and magnetic properties), functionalizations (surface modifications, heteroatom doping and the construction of composites) and applications (sensing, biomedical, catalysis, energy storage and optoelectronic devices etc.), are critically highlighted, and the future prospects and challenges of MQDs are discussed. This review will serve as a one-stop point for comprehending the most advanced developments of MQDs, and will hopefully enlighten researchers to employ MQDs for satisfying the growing requirements of the diverse applications.
- This article is part of the themed collections: Journal of Materials Chemistry A Recent Review Articles and Journal of Materials Chemistry A Lunar New Year collection 2021