MoS2-covered SnS nanosheets as anode material for lithium-ion batteries with high capacity and long cycle life†
Abstract
A designed hierarchical nanostructure consisting of SnS nanosheets and ultrathin MoS2 nanosheets was achieved by a facile hydrothermal process with the assistance of fluoride and glucose. In this unique architecture, on the one hand, SnS and MoS2 nanosheets can greatly reduce the Li-ion and electron diffusion distance in the electrode. On the other hand, MoS2 nanosheets and amorphous carbon can not only prevent the direct exposure of SnS to the electrolyte but also maintain the structural stability of the electrode. In addition, the MoS2 nanosheets can offer more active sites for hosting lithium ions, resulting in higher capacity. When evaluated as anode material for lithium-ion batteries (LIBs), this SnS/MoS2–C composite exhibited stable cycling performance (989.7 mA h g−1 at 0.2 A g−1 after 60 cycles), superior rate capability (675 mA h g−1 even at 5.0 A g−1) and a long cycle life (718 mA h g−1 at 2.0 A g−1 after 700 cycles). Therefore, this SnS/MoS2–C composite is a promising candidate as anode material for next-generation high-performance LIBs.
- This article is part of the themed collection: International Year of the Periodic Table: Elements for Next Generation Batteries