LTA zeolite membranes: current progress and challenges in pervaporation
Abstract
Linde Type A (LTA) zeolite-based membranes have demonstrated excellent selectivity in pervaporation due to their unique structural framework and interaction with water. The development of LTA zeolite membranes for commercial application is limited by some parameters, particularly the complexity of the membrane preparation required to produce reproducible defect-free membranes and the high costs required for the membrane materials. In addition, the high content of Al in the zeolite framework makes the LTA zeolite membrane unsuitable for acidic conditions. A number of modification techniques have been proposed to produce a thin, defect-free, and high permselectivity LTA zeolite membrane with high reproducibility. Two major approaches are generally used to produce defect-free zeolite membranes, i.e. modifying either the seeding step or the synthesis process. Since the self-supported zeolite membrane has low mechanical stability, the LTA zeolite membrane is usually synthesized on an inorganic support to give better properties. Zeolite membrane costs can be reduced by several methods such as replacing the support, manufacturing a higher flux zeolite membrane, and fabricating a polymer–zeolite membrane. One should consider, however, that changing the support can dramatically influence and even reverse the obtained separation behavior. Despite various techniques used to prepare dense LTA zeolite membranes, a facile mass production technique with a highly reproducible result remains a significant challenge. To present a clear background for LTA zeolite and its performances in pervaporation, this paper includes a brief discussion on the recent trends related to LTA zeolite membranes. Some topics are discussed, including the features inherent to LTA zeolite, the transport phenomena in zeolite structures, preparation methods of LTA zeolite membranes, and the challenges associated with preparation. Furthermore, critical issues related to LTA zeolite membranes in pervaporation will be discussed to develop the topic further.
- This article is part of the themed collections: Zeolites and 3D Porous Solids and 2017 Review articles