Mesoporous carbons: recent advances in synthesis and typical applications
Abstract
Mesoporous carbon materials have been extensively studied because of their vast potential applications ranging from separation and adsorption, catalysis, and electrochemistry to energy storage. Their controllable and excellent properties distinguish mesoporous carbons from traditional carbon materials in their synthetic route, adjustable specific surface area and channels, and even interfacial properties. The template carbonization method has been widely used for the synthesis of mesoporous carbons and corresponding composites and endows mesoporous carbon materials with an ordered pore arrangement, developed pore structure and mesoporosity. Novel mesoporous carbon materials with unprecedented control over their morphology, framework and rich composition have been obtained by employing various nanotechnologies. The present manuscript mainly reviews the recent synthesis of mesoporous carbons regarding the synthetic routes and elements, special morphologies, improvements of the synthesis route, synthesis from biomass or waste, and magnetic or nitrogen-containing mesoporous carbons, plus their typical applications including adsorption, electrode materials and catalysts, with a brief introduction to the functionalization and modification of mesoporous carbons. Furthermore, some foreseeable challenges and directions of future research are proposed for the better development of mesoporous carbon materials.
- This article is part of the themed collection: Nanoscience and nanotechnology in electrochemistry