Synthesis of titanosilicate nanoparticles with high titanium content from a silsesquioxane-based precursor for a model epoxidation reaction†
Abstract
In conventional hydrothermal synthesis of porous titanosilicate materials, undesired aggregation of TiO2 species during the synthesis limits the content of active four-coordinated Ti to an Si/Ti ratio of about 40. Aiming to increase the content of active four-coordinated Ti species, we report a bottom-up synthesis of titanosilicate nanoparticles using a Ti-incorporated cubic silsesquioxane cage as a precursor, which allowed incorporating a larger number of four-coordinated Ti species in the silica matrix to reach an Si/Ti ratio of 19. Even at this relatively high Ti concentration, the catalytic activity in the epoxidation of cyclohexene over the titanosilicate nanoparticles was comparable to that of a conventional reference Ti catalyst, Ti-MCM-41, with an Si/Ti ratio of 60. The activity per Ti site was not affected by the Ti content in the nanoparticles, suggesting that well dispersed and stabilized Ti species were the active sites.
- This article is part of the themed collection: Nanoscale and Nanoscale Horizons: Nanoparticle Synthesis