Electron transfer catalysis mediated by 3d complexes of redox non-innocent ligands possessing an azo function: a perspective†
Abstract
It was first reported almost two decades ago that ligands with azo functions are capable of accepting electron(s) upon coordination to produce azo-anion radical complexes, thereby exhibiting redox non-innocence. Over the past two decades, there have been numerous reports of such complexes along with their structures and diverse characteristics. The ability of a coordinated azo function to accept one or more electron(s), thereby acting as an electron reservoir, is currently employed to carry out electron transfer catalysis since they can undergo redox transformation at mild potentials due to the presence of energetically accessible energy levels. The cooperative involvement of redox non-innocent ligand(s) containing an azo group and the coordinated metal centre can adjust and modulate the Lewis acidity of the latter through selective ligand-centred redox events, thereby manipulating the capacity of the metal centre to bind to the substrate. We have summarized the list of first row transition metal complexes of iron, cobalt, nickel, copper and zinc with redox non-innocent ligands incorporating an azo function that have been exploited as electron transfer catalysts to effectuate sustainable synthesis of a wide variety of useful chemicals. These include ketazines, pyrimidines, benzothiazole, benzoxazoles, N-acyl hydrazones, quinazoline-4(3)H-ones, C-3 alkylated indoles, N-alkylated anilines and N-alkylated heteroamines. The reaction pathways, as demonstrated by catalytic loops, reveal that the azo function of a coordinated ligand can act as an electron sink in the initial steps to bring about alcohol oxidation and thereafter, they serve as an electron pool to produce the final products either via HAT or PCET processes.
- This article is part of the themed collection: 2023 Frontier and Perspective articles