The emerging chemistry of the aluminyl anion
Abstract
The chemistry of low valent p-block metal complexes continues to elicit interest in the research community, demonstrating reactivity that replicates and in some cases exceeds that of their more widely studied d-block metal counterparts. The introduction of the first aluminyl anion, a complex containing a formally anionic Al(I) centre charge balanced by an alkali metal (AM) cation, has established a platform for a new area of chemical research. The chemistry displayed by aluminyl compounds is expanding rapidly, with examples of reactivity towards a diverse range of small molecules and functional groups now reported in the literature. Herein we present an account of the structure and reactivity of the growing family of aluminyl compounds. In this context we examine the structural relationships between the aluminyl anion and the AM cations, which now include examples of AM = Li, Na, K, Rb and Cs. We report on the ability of these compounds to engage in bond-breaking and bond-forming reactions, which is leading towards their application as useful reagents in chemical synthesis. Furthermore we discuss the chemistry of bimetallic complexes containing direct Al–M bonds (M = Li, Na, K, Mg, Ca, Cu, Ag, Au, Zn) and compounds with Al–E multiple bonds (E = NR, CR2, O, S, Se, Te), where both classes of compound are derived directly from aluminyl anions.
- This article is part of the themed collection: Chemical Communications HOT Articles 2023