Size exclusion propyne/propylene separation in an ultramicroporous yet hydrophobic metal–organic framework†
Abstract
Propyne/propylene separation is important in the petrochemical industry but challenging due to their similar physical properties and close molecular sizes. Herein, we present two isoreticular ultramicroporous Zn(II)-MOFs, Zn2(ATZ)2(TPDC) (BUT-305, H2TPDC = [1,1′:3′,1′′-terphenyl]-4,4′′-dicarboxylic acid, HATZ = 3-amino-1,2,4-triazole) and Zn2(ATZ)2(MeTPDC) (BUT-306, H2MeTPDC = 5′-methyl-[1,1′:3′,1′′-terphenyl]-4,4′′-dicarboxylic acid). The pore aperture of BUT-306 (∼1.6 Å) is smaller than that of BUT-305 due to the presence of extra gate-like methyl groups in the 1D channels of the former. With a narrow and hydrophobic pore aperture, BUT-306 exhibits high hydrophobicity and hydrolytic stability and adsorbs C3H4 but excludes C3H6 in a wide temperature range. The C3H6 and C3H4 adsorption capacities of BUT-306 at 298 K and ∼1 bar were 2.4 and 29.6 cm3 g−1, respectively. Dynamic column breakthrough experiments confirmed the high capability of BUT-306 to remove C3H4 from the equimolar binary gas mixture of C3H4 and C3H6. The C3H4/C3H6 separation performance of BUT-306 was largely retained even when the binary C3H4/C3H6 gas for breakthrough experiments was pre-saturated with water vapor. In addition, the single-crystal structure of C3H4-loaded BUT-306 was determined, which revealed that the adsorbed C3H4 molecules were located in the center of channel cavities and interacted with the MOF by multiple weak Cδ−⋯Cδ+ dipole–dipole interactions and C–H⋯п interactions. This work demonstrates the high potential of an ultramicroporous, hydrophobic, and hydrolytically stable MOF in the removal of C3H4 from the C3H4/C3H6 gas mixture by size exclusion adsorption. The structure and gas adsorption studies shed light on the design and synthesis of new adsorbents for the separation of light hydrocarbons.