Melamine-induced synthesis of a structurally perfect kagomé antiferromagnet†
Abstract
We report here a structurally perfect kagomé lattice {[Cu3(bpy)6](SiF6)3(melamine)8}n (1), where bpy is 4,4′-bipyridine and [SiF6]2− is a hexafluorosilicate anion. In comparison to general 1D linear, 2D layered and 3D cubic metal–organic frameworks, by using Cu2+ nodes and bpy ligands, a perfect kagomé lattice was synthesized by introducing C3 symmetrical melamine molecules. Magnetic susceptibility and low-temperature heat capacity measurements indicated weak antiferromagnetic interactions between the spins and no long-range magnetic ordering to 0.7 K. Using C3 symmetrical melamine molecules can be considered as a challenging synthetic strategy to afford new topological materials.
- This article is part of the themed collection: ChemComm Milestones – First Independent Articles