In situ cleavage and rearrangement synthesis of an easy-to-obtain and highly stable Cu(ii)-based MOF for efficient heterogeneous catalysis of carbon dioxide conversion†
Abstract
Cycloaddition of carbon dioxide (CO2) with epoxides into cyclic carbonates has been attracted substantial attentions for metal–organic frameworks based catalysis of CO2 chemical fixation, not only due to the contributions that solving the environmental issue of the excessive emission CO2, but also providing an effective pathway for the production of value-added fine chemicals. Herein, a Cu(II)-based metal–organic framework (1) was synthesized by the in situ cleavage and rearrangement of the N,N′-bis(4-picolinoyl)hydrazine ligand into an isonicotinate (INA) moiety as a connected node via solvothermal synthesis in high yields. This three-dimensional framework possesses infinite one-dimensional Cu–O double chains in a ladder-like arrangement with exposed metal centres, and can be highly stable up to at least 240 °C and in various solvents. Gas adsorption experiments reveal the good adsorption ability of 1 towards CO2 with a high value of Qst. Cycloaddition of CO2 with epoxides could successfully occur by using 1 as an efficient heterogeneous catalyst, affording almost complete conversion and selectivity under solvent free conditions.
- This article is part of the themed collection: Coordination Networks