Synthesis of hierarchical MoSe2 nanolayers on sodium sulfide crystals for electrocatalytic hydrogen evolution†
Abstract
Hydrogen generation via water electroreduction is pivotal for exploiting clean-energy skills. Nevertheless, developing a low price and high-performance catalytic activity substance to take the place of expensive precious metal currently in use is still a precedent condition for technology commercialization. In this study, large-scale hierarchical few-layer MoSe2 nanosheets were successfully grown on the surface of sodium sulfide crystals. The water solubility of sodium sulfide makes it advantageous to generate MoSe2 nanolayers via a simple and inexpensive means. The micron-level sodium sulfide crystal surface has a very critical function in the nucleus formation and development of few-layer MoSe2. The ultrathin hierarchical MoSe2 nanolayers obtained using the proposed approach have preferable hydrogen evolution reaction. Furthermore, it is a fascinating technique that the template can be reused without environmental pollution. This research can be used to manufacture other ultrathin hierarchical transition-metal dichalcogenide nanolayers for high-performance many-sided applications.
- This article is part of the themed collection: Nanomaterials