Anton
Kovalevskiy
a,
Congling
Yin
*ab,
Jürgen
Nuss
a,
Ulrich
Wedig
a and
Martin
Jansen
*a
aMax-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 70569 Stuttgart, Germany. E-mail: m.jansen@fkf.mpg.de
bMOE Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China. E-mail: congling.yin@glut.edu.cn
First published on 9th December 2019
Ag16B4O10 has been obtained as a coarse crystalline material via hydrothermal synthesis, and was characterized by X-ray single crystal and powder diffraction, conductivity and magnetic susceptibility measurements, as well as by DFT based theoretical analyses. Neither composition nor crystal structure nor valence electron counts can be fully rationalized by applying known bonding schemes. While the rare cage anion (B4O10)8− is electron precise, and reflects standard bonding properties, the silver ion substructure necessarily has to accommodate eight excess electrons per formula unit, (Ag+)16(B3+)4(O2−)10 × 8e−, rendering the compound sub-valent with respect to silver. However, the phenomena commonly associated with sub-valence metal (partial) structures are not perceptible in this case. Experimentally, the compound has been found to be semiconducting and diamagnetic, ruling out the presence of itinerant electrons; hence the excess electrons have to localize pairwise. However, no pairwise contractions of silver atoms are realized in the structure, thus excluding formation of 2e–2c bonds. Rather, cluster-like aggregates of an approximately tetrahedral shape exist where the Ag–Ag separations are significantly smaller than in elemental silver. The number of these subunits per formula is four, thus matching the required number of sites for pairwise nesting of eight excess electrons. This scenario has been corroborated by computational analyses of the densities of states and electron localization function (ELF), which clearly indicate the presence of an attractor within the shrunken tetrahedral voids in the silver substructure. However, one bonding electron pair of s and p type skeleton electrons per cluster unit is extremely low, and the significant propensity to form and the thermal stability of the title compound suggest d10–d10 bonding interactions to strengthen the inter-cluster bonding in a synergistic fashion. With the present state of knowledge, such a particular bonding pattern appears to be a singular feature of the oxide chemistry of silver; however, as indicated by analogous findings in related silver oxides, it is evolving as a general one.
The constitution has been confirmed unambiguously by single crystal X-ray structure determination. As illustrated in Fig. 2, the general structural organization of Ag16B4O10 derives straight forwardly from a ccp pattern of elemental silver: out of every twenty silver atoms four adjacent ones are replaced by boron. Since boron atoms are of considerably smaller size compared to silver, the substitution generates some empty space tolerating the insertion of oxygen atoms to form the polyoxoanion B4O108−. From this picture it is immediately obvious that the title compound ideally matches the notion of classifying crystal structures of extended inorganic solids rather based on the packing of the cations31 than on that of anions. Even beyond, it lends strong support to the further reaching concept according to which certain oxides may be regarded as alloys being stuffed with oxygen.32,33 This particular structural interrelation is underpinned by Fig. 3 and 4, showing the crystal structure of the title compound along the view directions [001] and [121], respectively.
Fig. 2 Schematic presentation of the cation substructure of Ag16B4O10, emphasizing its relationship to a ccp packing; Ag atoms (blue), partially replaced by B (grey). |
Fig. 4 Cut-out of the crystal structure of Ag16B4O10, view along [121]. Magnification (red circle) highlights a block consisting of five edge sharing octahedra with Ag–Ag distances labeled. Same color code as in Fig. 3. |
In more detail, all silver atoms are engaged in octahedral homoatomic building units, which are linked by sharing edges and vertices to form a 3D framework. Every silver atom is coordinated by either one or two oxygen atoms at a distance typical of this pair of atoms d(Ag–O) = 2.20–2.35 Å (see Table S3†).
The rare complex anion B4O108− has been observed here as an “isolated”, i.e. unbridged, entity for the first time.12 Two previous reports present this building block as part of an extended framework. Moreover, in both cases the structural analyses performed suffer from disorder, where occupation factors of 1/2 for the intra-cage bridging oxygen atoms even question the connectivity, i.e. the presence of such an integral anion, at all,13 or from refining split atom positions for the anion in two orientations, impairing the accuracy of the data obtained.14
The molecular anion, see Fig. 5, is isostructural and (valence) isoelectronic to P4O10. The bond lengths are in the expected range, see Tables 1 and S3,† and the variations reflect the position of the oxygen atoms, terminal or bridging within the adamantane type of cage. Drawing the chemical bonds of the cage anion in terms of the Lewis concept requires placing a formal negative charge on both, the boron and the terminal oxygen atoms. Although a formalism, this tells that the bonding situation is special and suggests looking for the respective structural distinguishing features by comparing with the isosteric cage molecule P4O10. Such an approach would imply comparison of the bonding of elements from the second and third row of the periodic table. For the latter, contributions of dπ–pπ multiple bonding and superimposed polar interactions are factors of influence,34 while for the former such dπ–pπ, or pπ–pπ interactions are not relevant; consequently, the bonding within the borate anion, where all boron atoms are in tetrahedral coordination, has to be analyzed exclusively in terms of σ bonding schemes. Indeed, comparing the bond lengths in B4O108− and P4O10 (ref. 35) reveals significant differences. In the borate the terminal B–O bonds are only 4.4% shorter than the bridging ones, whereas the respective shrinkage amounts to 10.1% for the phosphorous oxide, see Table 1. Obviously, for the P–Oterminal bonds multiple bonding and polarity act in a synergistic fashion, while in the borate for the shrinkage of the B–Oterminal bonds only polar inter-actions superimposing the σ bond are relevant, resulting in a smaller net effect.
Fig. 5 Perspective representation of the B4O108− anion. Color code: B (grey), O (red), displacement ellipsoids drawn at the 50% probability level. For the labeling scheme c.f. Tables S2 and S3.† |
[B4O10]8− | P4O10 | ||
---|---|---|---|
B–O(tr) | 1.431, Δ = −4.4% | P–O(tr) | 1.432, Δ = −10.1% |
B–O(br) | 1.497 | P–O(br) | 1.591 |
O(tr)–B–O(br) | 111.72 | O(tr)–P–O (br) | 116.06 |
O(br)–B–O(br) | 107.13 | O(br)–P–O (br) | 102.06 |
The B4O108− cage like polyoxoanion is electron precise, and thus the excess electrons according to (Ag+)16(B3+)4(O2−)10 × 8e− have to be accommodated by the silver substructure. As a consequence, one would expect itinerant electrons being present, giving rise to metallic conductivity. Surprisingly, the compound is a small band gap semiconductor, and diamagnetic, as shown in Fig. 6. By fitting the resistivities in the high temperature range above 150 K to the Arrhenius equation (Fig. 6 inset), an experimental band gap of 4.71(1) meV was obtained. This value is essentially identical to the calculated one, see below. The diamagnetic susceptibilities are estimated to be −1147 × 10−6 cm3 mol−1, based on an analysis of the magnetic susceptibilities applying a Curie–Weiss, Pauli and diamagnetic term. The upturn tail below 30 K is dominated by an unknown paramagnetic impurity (about 0.2% with S = 1/2). These results indicate the presence of localized and paired excess electrons. However, no particularly shortened individual Ag–Ag bond-length can be identified that would provide evidence for normal 2e–2c bonds, although the interatomic silver separations are on average smaller than those found for elemental silver. As can be seen from Fig. 4 (red circle) the ‘empty’ octahedral silver units appear to cluster, forming blocks consisting of five edge sharing octahedra. Each such cluster entity features two tetrahedral voids, where three out of six edges formed by silver atoms are substantially shorter (2.80 Å on average) than the separation in elemental silver (2.89 Å). This gives a first qualitative hint to the fact that these are the regions in real space where the excess electrons might be accommodated. Since these tetrahedral sites add up to four per formula unit, which in total may host four pairs of excess electrons, i.e. all of them, this view would comply with the experimentally found magnetic and transport properties. We exclude the possible presence of hydride anions, filling the contracted voids, for chemical reasons. Along any synthesis protocol yielding the title compound protons are essential constituents, and, moreover, applying an elevated oxygen pressure is an indispensable requirement. The pronouncedly basic and strongly reducing hydride ion cannot exist under such conditions.
In order to back this explanation quantitatively, we performed a DFT based computational analysis on the density of states (DOS), electron densities and localizations. DOS as well as the projections onto the atoms (PDOS) is shown in Fig. 7a. Over the whole energy range, which is shifted relative to the Fermi level (EF = 0 eV), oxygen basis functions contribute to the DOS. Below −7 eV, the silver PDOS is low. Bands are flat and can be associated with the B–O bonds in the B4O108− unit. The low contribution of boron to these bands points to the ionic character of the B–O bonds. The DOS between −7 eV and −3.2 eV is dominated by the 4d states of the silver atoms, however, it shows two peculiarities. At lower energies within this range, Ag3 and Ag4 show a significantly higher PDOS than Ag1 and Ag2, due to additional 5s-contributions. At −5.5 eV, the DOS shows a maximum. Here further flat bands attributed to B–O bonds can be assigned within the manifold of silver d-states, in this case, however, with a higher Ag 4d ratio. In the range between −3.2 eV and −1.4 eV the PDOS of silver and oxygen atoms contribute at nearly equal weight to the total DOS. These bands are related to the interaction between the oxygen lone pairs and the silver 4d-shells.
Fig. 7 (a) Total and atom-projected density of states, (b) isosurface (0.04 e− Å−3) of the electron density generated by the disperse bands below the Fermi level (EF −1.44 eV to EF), (c) bands at EF. |
From −1.44 eV up to the Fermi level bands with higher dispersion are located. The respective atomic contributions can be visualized by drawing isosurfaces of the electron density computed from these bands (Fig. 7b). These bands are delocalized over the whole crystal. Note, for clarity reasons, only a cut-out of the isosurface is shown in Fig. 7b. The bands are filled and the system is not metallic. There is a distinct band gap in most parts of the Brillouin zone. Only at k = (1/2 1/2 1/6) it becomes as tiny as 15 meV (Fig. 7c). The highest valence band and the lowest conduction band exhibit a parabolic dispersion. Significant effects of spin–orbit coupling are not expected, as the Ag 4d-shell is practically filled and the 5d-orbitals are only affected indirectly. Moreover, the projected densities of states show the same character in both bands. The band gap at k = (1/2 1/2 1/6) can be seen only in calculations with hybrid functionals. When using gradient corrected (GGA) functionals without fractional Hartree–Fock exchange the band gap is underestimated and vanishes, although still a minimum of the DOS can be seen at EF.
The projections of the DOS shown in Fig. 7a are based on a partitioning with respect to atomic basis functions. In the linear expansion of the bands, a certain basis function may contribute to a state which is attributed to a neighboring atom, and an interpretation in terms of chemical bonding may not be unique. Additional methods in position space give complementary information. The partitioning of space resulting from a topological analysis of the total electron density24 gives atomic volumes and net charges, which are quite robust with respect to the choice of the basis set. The values computed for Ag16B4O10 are summarized in Table 2. The volumes and charges at the various atomic positions are clearly related to the connectivity. Ag3 and Ag4, which have a lower positive charge, have only one short distance <2.4 Å to the neighboring oxygen, whereas Ag1 and Ag2 with a higher positive charge have two of them. Likewise, the negative charge of the oxygen atoms varies, depending on whether they occupy a bridging or terminal position in the B4O108− unit. The high positive charge of the boron atom points to a substantially ionic character of the B–O bond.
Volume/Å3 | Net charge | Connectivity | |
---|---|---|---|
Ag1 | 16.639 | +0.354 | Two nearest oxygen neighbors |
Ag2 | 16.619 | +0.344 | |
Ag3 | 17.151 | +0.212 | One nearest oxygen neighbor |
Ag4 | 17.323 | +0.236 | |
O1 | 10.217 | −1.411 | Bridging |
O2 | 10.283 | −1.438 | |
O3 | 11.363 | −1.293 | Terminal |
B | 1.533 | +2.290 |
Further information on the bonding characteristics in position space can be obtained by the inspection of the electron localization function27,28 (ELF), which can take values between 0 and 1. High ELF values η are related to atomic shells, covalent bonds and lone pairs. The ELF in Ag16B4O10 comprises three distinct features. At first, there are nearly spherical domains around each silver atom, representing the filled 4d10 shells. In Fig. 8, these domains are omitted for clarity reasons.
Fig. 8 Selected domains of the electron localization function (ELF): (a) domains in the B4O108− anion with η = 0.84, (b) domain with η = 0.23 around the attractor in the tetrahedral voids. |
The domains associated with the B4O108− anion are represented in Fig. 8a showing the lone pairs of the oxygen ions and one attractor respectively along each B–O bond. The fact that the attractor is close to the oxygen atom is another hint to the polar character of this bond. A special feature of the ELF, an attractor at η = 0.23 appears in each tetrahedral void of the silver network. Fig. 8b shows the domain with η = 0.23 around one of them. η = 0.23 is a rather low value, though it represents a clear maximum in the ELF. Attractors with low ELF values may originate from the influence of close-by filled d-shells,36 nevertheless pointing to covalent interactions in the valence shell. Indeed, the face of the tetrahedron closest to the attractor contains two of the shortest Ag–Ag bonds (<2.80 Å) within the range from 2.78 Å to 3.23 Å of all Ag–Ag contacts (cf. metallic silver 2.89 Å).
Putting DOS, QTAIM and ELF information together, the bonding properties in Ag16B4O10 can be sketched as follows. The intra-molecular bonding in B4O108− is prevailingly polar in nature. The silver d-states span a wide energy range in the DOS pointing to significant d10–d10 interactions.5–7 Related to the sub-valence nature of the silver atoms, covalent interactions are apparent, especially in the tetrahedral voids of the silver clusters, where an ELF attractor is found. Thus, the silver network receives further stabilization beyond classical and d10–d10 bonding. Besides the obvious ionic interactions between the anionic unit and the silver framework, no indications for covalent contributions have been identified in the ELF. We understand the large overlap of the projected DOS of silver and oxygen to reflect dispersion interaction between the silver d10-shells and the oxygen lone pairs, both being highly polarizable, leading to a further stabilization of the compound.
Footnote |
† Electronic supplementary information (ESI) available: Temperature dependent powder X-ray diffraction; crystal data, data collection and refinement details for Ag16B4O10 at 298 K; atomic coordinates and displacement parameters; selected interatomic distances and angles; refined atomic parameters against PXRD; computational details including pseudopotentials (scalar relativistic) and basis sets, tolerance parameters used in the CRYSTAL17 input, and structural parameters used in the calculation. See DOI: 10.1039/c9sc05185f |
This journal is © The Royal Society of Chemistry 2020 |