Photocatalytic CO2 reduction using metal complexes in various ionic liquids†
Abstract
Aiming to diversify photocatalytic systems for CO2 reduction using metal complexes, this study investigated the use of various ionic liquids as reaction solvents. The photophysical properties of an Ir(III) complex, functioning as a photosensitiser, and the photocatalytic ability of mixed systems consisting of the Ir(III) photosensitiser and a Re(I) catalyst in twelve kinds of ionic liquids were systematically investigated by comparison with those in N,N-dimethylacetamide (DMA), which is a standard solvent for photocatalytic CO2 reduction. Even though the photophysical properties of the Ir(III) complex in ionic-liquid solutions were quite similar to those in DMA, both the photosensitising ability of the Ir complex and the photocatalytic abilities of the systems strongly depended on the structures of the ionic liquids. Several ionic liquids were successfully used as new solvents for the photocatalytic systems showing durability similar to or higher than DMA solutions. The results demonstrated that even a small modification of the molecular structures of ionic liquids can control the efficiencies of both the photosensitising cycles and the catalytic cycles for CO2 reduction.
- This article is part of the themed collections: Spotlight Collection: Photoinduced redox chemistry and Metal Complexes and Inorganic Materials for Solar Fuel Production